BDNNSurv: Bayesian deep neural networks for survival analysis using
pseudo values
- URL: http://arxiv.org/abs/2101.03170v1
- Date: Thu, 7 Jan 2021 20:18:43 GMT
- Title: BDNNSurv: Bayesian deep neural networks for survival analysis using
pseudo values
- Authors: Dai Feng and Lili Zhao
- Abstract summary: We propose a Bayesian hierarchical deep neural networks model for modeling and prediction of survival data.
Compared with previously studied methods, the new proposal can provide point estimate of survival probability.
The Python code implementing the proposed approach was provided.
- Score: 7.707091943385522
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: There has been increasing interest in modeling survival data using deep
learning methods in medical research. In this paper, we proposed a Bayesian
hierarchical deep neural networks model for modeling and prediction of survival
data. Compared with previously studied methods, the new proposal can provide
not only point estimate of survival probability but also quantification of the
corresponding uncertainty, which can be of crucial importance in predictive
modeling and subsequent decision making. The favorable statistical properties
of point and uncertainty estimates were demonstrated by simulation studies and
real data analysis. The Python code implementing the proposed approach was
provided.
Related papers
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
A popular approach for estimating the predictive uncertainty of neural networks is to define a prior distribution over the network parameters.
We propose a scalable function-space variational inference method that allows incorporating prior information.
We show that the proposed method leads to state-of-the-art uncertainty estimation and predictive performance on a range of prediction tasks.
arXiv Detail & Related papers (2023-12-28T18:33:26Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
We show how to estimate parameters from max-stable processes, where inference is exceptionally challenging.
We use data from model simulations as input and train deep neural networks to learn statistical parameters.
arXiv Detail & Related papers (2021-07-29T21:59:48Z) - Learning to Predict with Supporting Evidence: Applications to Clinical
Risk Prediction [9.199022926064009]
The impact of machine learning models on healthcare will depend on the degree of trust that healthcare professionals place in the predictions made by these models.
We present a method to provide people with clinical expertise with domain-relevant evidence about why a prediction should be trusted.
arXiv Detail & Related papers (2021-03-04T00:26:32Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Robust and integrative Bayesian neural networks for likelihood-free
parameter inference [0.0]
State-of-the-art neural network-based methods for learning summary statistics have delivered promising results for simulation-based likelihood-free parameter inference.
This work proposes a robust integrated approach that learns summary statistics using Bayesian neural networks, and directly estimates the posterior density using categorical distributions.
arXiv Detail & Related papers (2021-02-12T13:45:23Z) - Semi-Structured Deep Piecewise Exponential Models [2.7728956081909346]
We propose a versatile framework for survival analysis that combines advanced concepts from statistics with deep learning.
A proof of concept is provided by using the framework to predict Alzheimer's disease progression.
arXiv Detail & Related papers (2020-11-11T14:41:19Z) - Neural Approximate Sufficient Statistics for Implicit Models [34.44047460667847]
We frame the task of constructing sufficient statistics as learning mutual information maximizing representations of the data with the help of deep neural networks.
We apply our approach to both traditional approximate Bayesian computation and recent neural likelihood methods, boosting their performance on a range of tasks.
arXiv Detail & Related papers (2020-10-20T07:11:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.