Estimation of Missing Data in Intelligent Transportation System
- URL: http://arxiv.org/abs/2101.03295v1
- Date: Sat, 9 Jan 2021 05:42:31 GMT
- Title: Estimation of Missing Data in Intelligent Transportation System
- Authors: Bahareh Najafi, Saeedeh Parsaeefard, Alberto Leon-Garcia
- Abstract summary: We study missing traffic speed and travel time estimations in intelligent transportation systems (ITS)
We focus on an ML-based approach, Multi-Directional Recurrent Neural Network (M-RNN)
We evaluate the effectiveness of this approach on a TomTom dataset containingtemporal- measurements of average vehicle speed and travel time.
- Score: 5.936402320555635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Missing data is a challenge in many applications, including intelligent
transportation systems (ITS). In this paper, we study traffic speed and travel
time estimations in ITS, where portions of the collected data are missing due
to sensor instability and communication errors at collection points. These
practical issues can be remediated by missing data analysis, which are mainly
categorized as either statistical or machine learning(ML)-based approaches.
Statistical methods require the prior probability distribution of the data
which is unknown in our application. Therefore, we focus on an ML-based
approach, Multi-Directional Recurrent Neural Network (M-RNN). M-RNN utilizes
both temporal and spatial characteristics of the data. We evaluate the
effectiveness of this approach on a TomTom dataset containing spatio-temporal
measurements of average vehicle speed and travel time in the Greater Toronto
Area (GTA). We evaluate the method under various conditions, where the results
demonstrate that M-RNN outperforms existing solutions,e.g., spline
interpolation and matrix completion, by up to 58% decreases in Root Mean Square
Error (RMSE).
Related papers
- Evaluation of Missing Data Analytical Techniques in Longitudinal Research: Traditional and Machine Learning Approaches [11.048092826888412]
This study utilizes Monte Carlo simulations to assess and compare the effectiveness of six analytical techniques for missing data within the growth curve modeling framework.
We investigate the influence of sample size, missing data rate, missing data mechanism, and data distribution on the accuracy and efficiency of model estimation.
arXiv Detail & Related papers (2024-06-19T20:20:30Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - ST-GIN: An Uncertainty Quantification Approach in Traffic Data
Imputation with Spatio-temporal Graph Attention and Bidirectional Recurrent
United Neural Networks [18.66289473659838]
We propose an innovative deep learning approach for imputing missing data.
A graph attention architecture is employed to capture the spatial correlations present in traffic data.
A bidirectional neural network is utilized to learn temporal information.
arXiv Detail & Related papers (2023-05-10T22:15:40Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Learning spatiotemporal features from incomplete data for traffic flow
prediction using hybrid deep neural networks [0.28675177318965034]
This study focuses on hybrid deep neural networks to predict traffic flow in the California Freeway Performance Measurement System (PeMS) with missing values.
Various architecture configurations with series and parallel connections are considered based on RNNs and CNNs.
A comprehensive analysis performed on two different datasets from PeMS indicates that the proposed series-parallel hybrid network with the mean imputation technique achieves the lowest error in predicting the traffic flow.
arXiv Detail & Related papers (2022-04-21T15:57:08Z) - Multiple Imputation via Generative Adversarial Network for
High-dimensional Blockwise Missing Value Problems [6.123324869194195]
We propose Multiple Imputation via Generative Adversarial Network (MI-GAN), a deep learning-based (in specific, a GAN-based) multiple imputation method.
MI-GAN shows strong performance matching existing state-of-the-art imputation methods on high-dimensional datasets.
In particular, MI-GAN significantly outperforms other imputation methods in the sense of statistical inference and computational speed.
arXiv Detail & Related papers (2021-12-21T20:19:37Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future.
We conduct extensive experiments on three real-world datasets under different missing patterns and missing rates.
arXiv Detail & Related papers (2021-10-05T18:20:42Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic
Data Imputation [13.48205738743634]
Missing data imputation is common in intemporal traffic data collected from various sensing systems.
We present an efficient algorithm to obtain the optimal solution for each variable.
The proposed model also outperforms other baseline models in extreme missing scenarios.
arXiv Detail & Related papers (2020-03-23T13:27:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.