Invariant Neural Network Ansatz for weakly symmetric Open Quantum
Lattices
- URL: http://arxiv.org/abs/2101.03511v2
- Date: Mon, 10 May 2021 09:32:21 GMT
- Title: Invariant Neural Network Ansatz for weakly symmetric Open Quantum
Lattices
- Authors: Davide Nigro
- Abstract summary: We show that, whenever the steady state is unique, one can introduce a neural network representation for the system density operator.
We demonstrate the validity of our approach by determining the steady state structure of the one dimensional dissipative XYZ model in the presence of a uniform magnetic field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider $d$-dimensional open quantum lattices whose time evolution is
governed by a master equation which is weakly symmetric under the action of a
finite group $G$ that is a subgroup of all the possible permutations of the
lattice sites. We show that, whenever the steady state is unique, one can
introduce a neural network representation for the system density operator that
explicitly accounts for the system symmetries and can be efficiently optimized
by exploring only a relevant subspace of the parameter space. In particular, as
a proof of principle, we demonstrate the validity of our approach by
determining the steady state structure of the one dimensional dissipative XYZ
model in the presence of a uniform magnetic field.
Related papers
- Equivalence of dynamics of disordered quantum ensembles and semi-infinite lattices [44.99833362998488]
We develop a formalism for mapping the exact dynamics of an ensemble of disordered quantum systems onto the dynamics of a single particle propagating along a semi-infinite lattice.
This mapping provides a geometric interpretation on the loss of coherence when averaging over the ensemble and allows computation of the exact dynamics of the entire disordered ensemble in a single simulation.
arXiv Detail & Related papers (2024-06-25T18:13:38Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Permutationally invariant processes in arbitrary multiqudit systems [0.0]
We establish the theoretical framework for an exact description of the open system dynamics of permutationally invariant (PI) states in arbitrary $N$-qudit systems.
Thanks to Schur-Weyl duality powerful formalism, we identify an orthonormal operator basis in the PI operator subspace of the Liouville space onto which the master equation can be projected.
arXiv Detail & Related papers (2023-07-12T12:45:21Z) - Exact Entanglement in the Driven Quantum Symmetric Simple Exclusion
Process [0.0]
Entanglement properties of driven quantum systems can potentially differ from the equilibrium situation due to long range coherences.
We derive exact formulae for its mutual information between different subsystems in the steady state and show that it satisfies a volume law.
Surprisingly, the QSSEP entanglement properties only depend on data related to its transport properties and we suspect that such a relation might hold for more general mesoscopic systems.
arXiv Detail & Related papers (2023-04-21T14:37:14Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Automated detection of symmetry-protected subspaces in quantum
simulations [0.0]
We introduce two classical algorithms, which efficiently compute and elucidate features of symmetry-protected subspaces.
These algorithms lend themselves to the post-selection of quantum computer data, optimized classical simulation of quantum systems, and the discovery of previously hidden symmetries in quantum mechanical systems.
arXiv Detail & Related papers (2023-02-16T21:17:48Z) - Detecting emergent continuous symmetries at quantum criticality [0.0]
New or enlarged symmetries can emerge at the low-energy spectrum of a Hamiltonian that does not possess the symmetries.
We numerically propose a tensor network based algorithm to extract lattice operator approximation of the emergent conserved currents from the ground state of any quantum spin chains.
arXiv Detail & Related papers (2022-10-31T17:54:42Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Role of symmetry in quantum search via continuous-time quantum walk [0.0]
We discuss how the symmetries of the graphs are related to the existence of such an invariant subspace.
This discussion also suggests that all the symmetries are used up in the invariant subspace and the asymmetric part of the Hamiltonian is very important for the purpose of quantum search.
arXiv Detail & Related papers (2021-06-15T19:55:37Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Sampling asymmetric open quantum systems for artificial neural networks [77.34726150561087]
We present a hybrid sampling strategy which takes asymmetric properties explicitly into account, achieving fast convergence times and high scalability for asymmetric open systems.
We highlight the universal applicability of artificial neural networks, underlining the universal applicability of neural networks.
arXiv Detail & Related papers (2020-12-20T18:25:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.