Detecting emergent continuous symmetries at quantum criticality
- URL: http://arxiv.org/abs/2210.17539v4
- Date: Sun, 26 Nov 2023 12:22:21 GMT
- Title: Detecting emergent continuous symmetries at quantum criticality
- Authors: Mingru Yang, Bram Vanhecke, Norbert Schuch
- Abstract summary: New or enlarged symmetries can emerge at the low-energy spectrum of a Hamiltonian that does not possess the symmetries.
We numerically propose a tensor network based algorithm to extract lattice operator approximation of the emergent conserved currents from the ground state of any quantum spin chains.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: New or enlarged symmetries can emerge at the low-energy spectrum of a
Hamiltonian that does not possess the symmetries, if the symmetry breaking
terms in the Hamiltonian are irrelevant under the renormalization group flow.
In this letter, we propose a tensor network based algorithm to numerically
extract lattice operator approximation of the emergent conserved currents from
the ground state of any quantum spin chains, without the necessity to have
prior knowledge about its low-energy effective field theory. Our results for
the spin-1/2 $J$-$Q$ Heisenberg chain and a one-dimensional version of the
deconfined quantum critical points (DQCP) demonstrate the power of our method
to obtain the emergent lattice Kac-Moody generators. It can also be viewed as a
way to find the local integrals of motion of an integrable model and the local
parent Hamiltonian of a critical gapless ground state.
Related papers
- Entanglement Hamiltonian and effective temperature of non-Hermitian quantum spin ladders [0.0]
We analytically investigate the entanglement Hamiltonian and entanglement energy spectrum of a non-Hermitian spin ladder.
Our findings provide new insights into quantum entanglement in non-Hermitian systems.
arXiv Detail & Related papers (2024-09-25T16:20:24Z) - Detecting Quantum Anomalies in Open Systems [0.0]
We introduce a novel and experimentally feasible approach to detect quantum anomalies in open systems.
We numerically demonstrate the unavoidable singular behavior of $exp(rmitheta Sz_rm tot)$ for half-integer spin chains.
arXiv Detail & Related papers (2023-12-18T13:29:07Z) - Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Emergence of Kac-Moody Symmetry in Critical Quantum Spin Chains [0.0]
We numerically investigate the emergence of Kac-Moody symmetry at low energies and long distances.
We first propose a method to construct lattice operators corresponding to the Kac-Moody generators.
We numerically show that, when projected onto low energy states of the quantum spin chain, these operators indeed approximately fulfill the Kac-Moody algebra.
arXiv Detail & Related papers (2022-06-03T16:02:50Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Stoquasticity in circuit QED [78.980148137396]
We show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems.
We corroborate the recent finding that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits.
arXiv Detail & Related papers (2020-11-02T16:41:28Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.