論文の概要: Multi-agent Reinforcement Learning: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2312.10256v2
- Date: Wed, 3 Jul 2024 00:27:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 20:23:32.692885
- Title: Multi-agent Reinforcement Learning: A Comprehensive Survey
- Title(参考訳): マルチエージェント強化学習 : 総合的な調査
- Authors: Dom Huh, Prasant Mohapatra,
- Abstract要約: マルチエージェントシステム(MAS)は、多くの現実世界のアプリケーションにおいて広く普及し、重要な存在である。
汎用性にもかかわらず、MASにおける知的意思決定エージェントの開発は、その効果的な実装にいくつかのオープンな課題を提起している。
本調査は,ゲーム理論(GT)と機械学習(ML)による基礎概念の研究に重点を置いて,これらの課題を考察する。
- 参考スコア(独自算出の注目度): 10.186029242664931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent systems (MAS) are widely prevalent and crucially important in numerous real-world applications, where multiple agents must make decisions to achieve their objectives in a shared environment. Despite their ubiquity, the development of intelligent decision-making agents in MAS poses several open challenges to their effective implementation. This survey examines these challenges, placing an emphasis on studying seminal concepts from game theory (GT) and machine learning (ML) and connecting them to recent advancements in multi-agent reinforcement learning (MARL), i.e. the research of data-driven decision-making within MAS. Therefore, the objective of this survey is to provide a comprehensive perspective along the various dimensions of MARL, shedding light on the unique opportunities that are presented in MARL applications while highlighting the inherent challenges that accompany this potential. Therefore, we hope that our work will not only contribute to the field by analyzing the current landscape of MARL but also motivate future directions with insights for deeper integration of concepts from related domains of GT and ML. With this in mind, this work delves into a detailed exploration of recent and past efforts of MARL and its related fields and describes prior solutions that were proposed and their limitations, as well as their applications.
- Abstract(参考訳): マルチエージェントシステム(MAS)は、多くの実世界のアプリケーションにおいて広く普及し、重要な存在である。
汎用性にもかかわらず、MASにおける知的意思決定エージェントの開発は、その効果的な実装にいくつかのオープンな課題を提起している。
本研究は、ゲーム理論(GT)と機械学習(ML)から基礎概念の研究に重点を置いて、これらをマルチエージェント強化学習(MARL)における最近の進歩、すなわちMASにおけるデータ駆動意思決定の研究と結びつけて、これらの課題を考察する。
したがって、本調査の目的は、MARLの様々な側面に沿った総合的な視点を提供することであり、この可能性に伴う固有の課題を強調しながら、MARLアプリケーションで提示されるユニークな機会に光を当てることである。
したがって、我々の研究は、現在のMARLの状況を分析することによって、分野に貢献するだけでなく、GTとMLの関連ドメインから概念のより深い統合に関する洞察を得て、今後の方向性を動機付けることを願っている。
このことを念頭に置いて、この研究は、MARLとその関連分野の最近のおよび過去の取り組みを詳細に調査し、提案された先行ソリューションとその制限、およびそれらの応用について説明する。
関連論文リスト
- Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - A Survey on Game Playing Agents and Large Models: Methods, Applications, and Challenges [29.74898680986507]
複雑なゲームプレイシナリオにおけるLM使用状況と課題を概観する。
我々は,ゲームにおけるLMの進歩に向けた将来的な研究の道のりについて,今後の展望を述べる。
論文 参考訳(メタデータ) (2024-03-15T12:37:12Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - MIKE: A New Benchmark for Fine-grained Multimodal Entity Knowledge
Editing [21.760293271882997]
マルチモーダル知識編集は、マルチモーダル大言語モデル(MLLM)の能力向上における重要な進歩である
現在のベンチマークは主に粗粒度知識に焦点が当てられており、細粒度(FG)マルチモーダル実体知識の複雑さはほとんど解明されていない。
このギャップを埋めるために、我々はFGマルチモーダルエンティティ知識編集用に特別に設計された総合的なベンチマークとデータセットであるMIKEを紹介する。
論文 参考訳(メタデータ) (2024-02-18T07:15:03Z) - Large Language Model based Multi-Agents: A Survey of Progress and Challenges [44.92286030322281]
大規模言語モデル(LLM)は、幅広いタスクで大きな成功を収めています。
近年, 1 つの LLM を単一計画や意思決定エージェントとして利用する手法の開発により, 複雑な問題解決や世界シミュレーションにおいて, LLM ベースのマルチエージェントシステムは大きな進歩を遂げている。
論文 参考訳(メタデータ) (2024-01-21T23:36:14Z) - Exploring the Reasoning Abilities of Multimodal Large Language Models
(MLLMs): A Comprehensive Survey on Emerging Trends in Multimodal Reasoning [44.12214030785711]
マルチモーダル大言語モデル(MLLM)のフロンティアを分類・記述し、既存のマルチモーダル推論の評価プロトコルについて概観する。
本稿では,MLLMの推論集約型タスクへの適用動向を紹介するとともに,現在の実践と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-01-10T15:29:21Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
情報抽出は、平易な自然言語テキストから構造的知識を抽出することを目的としている。
生成型大規模言語モデル(LLM)は、テキストの理解と生成において顕著な能力を示した。
LLMは生成パラダイムに基づいたIEタスクに対して実行可能なソリューションを提供する。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
マルチメディア分析から医療診断に至るまで、クロスモーダル推論(CMR)が重要な分野として浮上している。
この調査は、解釈可能なクロスモーダル推論(I-CMR)の領域を掘り下げる
本調査では,I-CMRの3段階分類法について概説する。
論文 参考訳(メタデータ) (2023-09-05T05:06:48Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
大規模言語モデル(LLM)は、人間レベルの知性を達成する上で、顕著な可能性を示している。
本稿では,LLMに基づく自律エージェントの分野を総合的な観点から体系的に検討する。
本稿では、社会科学、自然科学、工学の分野におけるLLMベースの自律エージェントの多様な応用について概観する。
論文 参考訳(メタデータ) (2023-08-22T13:30:37Z) - A Versatile Multi-Agent Reinforcement Learning Benchmark for Inventory
Management [16.808873433821464]
マルチエージェント強化学習(MARL)は、共有環境内で対話し学習する複数のエージェントをモデル化する。
MARLを現実のシナリオに適用することは、スケールアップ、複雑なエージェントインタラクション、非定常ダイナミクスといった多くの課題によって妨げられます。
論文 参考訳(メタデータ) (2023-06-13T05:22:30Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野を著しく進歩させた。
広範囲のアプリケーションに対して、非常に有用でタスクに依存しない基盤を提供する。
しかし、特定の領域における洗練された問題を解決するために直接LLMを適用することは、多くのハードルを満たす。
論文 参考訳(メタデータ) (2023-05-30T03:00:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。