Quantum Mathematics in Artificial Intelligence
- URL: http://arxiv.org/abs/2101.04255v3
- Date: Mon, 1 Feb 2021 17:36:32 GMT
- Title: Quantum Mathematics in Artificial Intelligence
- Authors: Dominic Widdows and Kirsty Kitto and Trevor Cohen
- Abstract summary: This paper describes some of the common mathematical areas, including examples of how they are used in artificial intelligence (AI)
Some of these approaches can potentially be implemented on quantum hardware.
- Score: 4.958574440736237
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the decade since 2010, successes in artificial intelligence have been at
the forefront of computer science and technology, and vector space models have
solidified a position at the forefront of artificial intelligence. At the same
time, quantum computers have become much more powerful, and announcements of
major advances are frequently in the news.
The mathematical techniques underlying both these areas have more in common
than is sometimes realized. Vector spaces took a position at the axiomatic
heart of quantum mechanics in the 1930s, and this adoption was a key motivation
for the derivation of logic and probability from the linear geometry of vector
spaces. Quantum interactions between particles are modelled using the tensor
product, which is also used to express objects and operations in artificial
neural networks.
This paper describes some of these common mathematical areas, including
examples of how they are used in artificial intelligence (AI), particularly in
automated reasoning and natural language processing (NLP). Techniques discussed
include vector spaces, scalar products, subspaces and implication, orthogonal
projection and negation, dual vectors, density matrices, positive operators,
and tensor products. Application areas include information retrieval,
categorization and implication, modelling word-senses and disambiguation,
inference in knowledge bases, and semantic composition.
Some of these approaches can potentially be implemented on quantum hardware.
Many of the practical steps in this implementation are in early stages, and
some are already realized. Explaining some of the common mathematical tools can
help researchers in both AI and quantum computing further exploit these
overlaps, recognizing and exploring new directions along the way.
Related papers
- Quantum Natural Language Processing [0.03495246564946555]
Language processing is at the heart of current developments in artificial intelligence.
This paper surveys the state of this area, showing how NLP-related techniques have been used in quantum language processing.
arXiv Detail & Related papers (2024-03-28T18:15:07Z) - Synergy of machine learning with quantum computing and communication [0.0]
Machine learning in quantum computing and communication provides opportunities for revolutionizing the field of Physics, Mathematics, and Computer Science.
This paper gives a comprehensive review of state-of-the-art approaches in quantum computing and quantum communication in the context of Artificial Intelligence and machine learning models.
arXiv Detail & Related papers (2023-10-05T10:18:39Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - A Survey of Deep Learning for Mathematical Reasoning [71.88150173381153]
We review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade.
Recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning.
arXiv Detail & Related papers (2022-12-20T18:46:16Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
Recent developments in artificial neural networks, particularly deep learning (DL), are reviewed in detail.
Both hybrid and pure machine learning (ML) methods are discussed.
History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics.
arXiv Detail & Related papers (2022-12-18T02:03:00Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Neural Network Classifiers: A Tutorial [1.4567067583556714]
We focus on quantum neural networks in the form of parameterized quantum circuits.
We will mainly discuss different structures and encoding strategies of quantum neural networks for supervised learning tasks.
benchmark their performance utilizing Yao.jl, a quantum simulation package written in Julia Language.
arXiv Detail & Related papers (2022-06-06T18:00:01Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
Machine learning and quantum computing are causing a paradigm shift in the performance and behavior of certain algorithms.
This paper first understands the mathematical intuition for the implementation of quantum feature space.
We build a noisy variational quantum circuit KNN which mimics the classification methods of a traditional KNN.
arXiv Detail & Related papers (2020-02-22T04:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.