Quantum Control in Open and Periodically Driven Systems
- URL: http://arxiv.org/abs/2101.04267v1
- Date: Tue, 12 Jan 2021 02:46:48 GMT
- Title: Quantum Control in Open and Periodically Driven Systems
- Authors: Si-Yuan Bai, Chong Chen, Hong Wu, Jun-Hong An
- Abstract summary: How to protect quantum resources under the coexistence of active control and passive decoherence is of significance.
Recent studies have revealed that the decoherence is determined by the feature of the system-environment energy spectrum.
We will review the progress on quantum control in open and periodically driven systems.
- Score: 1.5948239853047765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum technology resorts to efficient utilization of quantum resources to
realize technique innovation. The systems are controlled such that their states
follow the desired manners to realize different quantum protocols. However, the
decoherence caused by the system-environment interactions causes the states
deviating from the desired manners. How to protect quantum resources under the
coexistence of active control and passive decoherence is of significance.
Recent studies have revealed that the decoherence is determined by the feature
of the system-environment energy spectrum: Accompanying the formation of bound
states in the energy spectrum, the decoherence can be suppressed. It supplies a
guideline to control decoherence. Such idea can be generalized to systems under
periodic driving. By virtue of manipulating Floquet bound states in the
quasienergy spectrum, coherent control via periodic driving dubbed as Floquet
engineering has become a versatile tool not only in controlling decoherence,
but also in artificially synthesizing exotic topological phases. We will review
the progress on quantum control in open and periodically driven systems.
Special attention will be paid to the distinguished role played by the bound
states and their controllability via periodic driving in suppressing
decoherence and generating novel topological phases.
Related papers
- Quantum Property Preservation [2.255961793913651]
Quantum property preservation (QPP) is the problem of maintaining a target property of a quantum system for as long as possible.
Here, we develop a general theory to formalize and analyze QPP.
We characterize properties encoded as scalar functions of the system state that can be preserved time-locally via continuous control using smoothly varying control Hamiltonians.
arXiv Detail & Related papers (2024-08-21T01:06:22Z) - Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Controlling Many-Body Quantum Chaos: Bose-Hubbard systems [0.0]
This work develops a quantum control application of many-body quantum chaos for ultracold bosonic gases trapped in optical lattices.
In the technique known as targeting, instead of a hindrance to control, the instability becomes a resource.
Explicit applications to custom state preparation and stabilization of quantum many-body scars are presented in one- and two-dimensional lattices.
arXiv Detail & Related papers (2024-01-31T11:03:58Z) - Counterdiabatic Driving for Periodically Driven Systems [0.0]
Periodically driven systems have emerged as a useful technique to engineer the properties of quantum systems.
We develop a technique to capture nonperturbative photon resonances and obtain high-fidelity protocols.
arXiv Detail & Related papers (2023-10-04T11:08:19Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Controlling the uncontrollable: Quantum control of open system dynamics [0.0]
Control of open quantum systems is an essential ingredient to the realization of contemporary quantum science and technology.
We demonstrate such control by employing a thermodynamically consistent framework, taking into account the fact that the drive can modify the interaction with environment.
arXiv Detail & Related papers (2022-05-12T09:16:09Z) - Many-body quantum state control in the presence of environmental noise [1.781926691887368]
We consider the quantum state control of a multi-state system which evolves an initial state into a target state.
We show that the prescribed quantum state control can be achieved with high fidelity.
Our findings will be of interest for the optimal control of a many-body open quantum system in the presence of environmental noise.
arXiv Detail & Related papers (2021-12-12T21:48:56Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.