論文の概要: A Brief Survey of Associations Between Meta-Learning and General AI
- arxiv url: http://arxiv.org/abs/2101.04283v1
- Date: Tue, 12 Jan 2021 03:57:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-04 12:31:00.011061
- Title: A Brief Survey of Associations Between Meta-Learning and General AI
- Title(参考訳): メタラーニングと一般AIの関連性に関する簡単な調査
- Authors: Huimin Peng
- Abstract要約: 本稿では,メタラーニングの歴史を概観し,一般AIへの貢献について述べる。
メモリモジュール、メタラーニング、共進化、好奇心、忘れ、AI生成アルゴリズムなど、一般的なAIの発展に対するメタラーニングの主な貢献をまとめます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper briefly reviews the history of meta-learning and describes its
contribution to general AI. Meta-learning improves model generalization
capacity and devises general algorithms applicable to both in-distribution and
out-of-distribution tasks potentially. General AI replaces task-specific models
with general algorithmic systems introducing higher level of automation in
solving diverse tasks using AI. We summarize main contributions of
meta-learning to the developments in general AI, including memory module,
meta-learner, coevolution, curiosity, forgetting and AI-generating algorithm.
We present connections between meta-learning and general AI and discuss how
meta-learning can be used to formulate general AI algorithms.
- Abstract(参考訳): 本稿では,メタラーニングの歴史を概観し,一般AIへの貢献について述べる。
メタラーニングはモデル一般化能力を向上し、分散処理と分散処理の両方に適用可能な汎用アルゴリズムを考案する。
汎用AIは、タスク固有のモデルを、AIを使用して多様なタスクを解決するための高度な自動化を導入する一般的なアルゴリズムシステムに置き換える。
我々は、メモリモジュール、メタラーナー、共進化、好奇心、忘れること、AI生成アルゴリズムなど、一般的なAI開発へのメタラーニングの主な貢献を要約する。
メタラーニングと一般AIの関連性を示し、一般AIアルゴリズムの定式化にメタラーニングをどのように使用できるかについて議論する。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
コネクショニストと象徴的人工知能(AI)の収束を探求する記事
従来、コネクショナリストAIはニューラルネットワークにフォーカスし、シンボリックAIはシンボリック表現とロジックを強調していた。
大型言語モデル(LLM)の最近の進歩は、人間の言語をシンボルとして扱う際のコネクショナリストアーキテクチャの可能性を強調している。
論文 参考訳(メタデータ) (2024-07-11T14:00:53Z) - A call for embodied AI [1.7544885995294304]
我々は、人工知能の次の基本ステップとして、エンボディードAIを提案する。
Embodied AIの範囲を広げることで、認知アーキテクチャに基づく理論的枠組みを導入する。
このフレームワークはFristonのアクティブな推論原則と一致しており、EAI開発に対する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-06T09:11:20Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging
Face [85.25054021362232]
大規模言語モデル(LLM)は、言語理解、生成、相互作用、推論において例外的な能力を示した。
LLMは、複雑なAIタスクを解決するために既存のAIモデルを管理するコントローラとして機能する可能性がある。
本稿では,機械学習コミュニティのさまざまなAIモデルを接続するLLMエージェントであるHuggingGPTを紹介する。
論文 参考訳(メタデータ) (2023-03-30T17:48:28Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - Responsible AI Pattern Catalogue: A Collection of Best Practices for AI
Governance and Engineering [20.644494592443245]
MLR(Multivocal Literature Review)の結果に基づく応答性AIパターンカタログを提案する。
原則やアルゴリズムのレベルにとどまらず、私たちは、AIシステムのステークホルダーが実際に行なえるパターンに注目して、開発済みのAIシステムがガバナンスとエンジニアリングライフサイクル全体を通して責任を負うようにします。
論文 参考訳(メタデータ) (2022-09-12T00:09:08Z) - A Brief Summary of Interactions Between Meta-Learning and
Self-Supervised Learning [0.0]
本稿ではメタラーニングと自己指導型学習の関連について概説する。
メタラーニングと自己教師付き学習モデルの統合は,モデル一般化能力の向上に最も貢献できることを示す。
論文 参考訳(メタデータ) (2021-03-01T08:31:28Z) - A Metamodel and Framework for Artificial General Intelligence From
Theory to Practice [11.756425327193426]
本稿では,自律学習と適応性を大幅に向上させるメタモデルに基づく知識表現を提案する。
我々は,時系列解析,コンピュータビジョン,自然言語理解といった問題にメタモデルを適用した。
メタモデルの驚くべき結果のひとつは、新たなレベルの自律的な学習と、マシンインテリジェンスのための最適な機能を可能にするだけでなく、それを可能にすることだ。
論文 参考訳(メタデータ) (2021-02-11T16:45:58Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z) - A Comprehensive Overview and Survey of Recent Advances in Meta-Learning [0.0]
メタラーニングはラーニング・トゥ・ラーン(Learning-to-Lern)とも呼ばれる。
メタラーニング手法は,ブラックボックスメタラーニング,メトリックベースメタラーニング,階層型メタラーニング,ベイズ的メタラーニングフレームワークである。
論文 参考訳(メタデータ) (2020-04-17T03:11:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。