論文の概要: Aligning Generalisation Between Humans and Machines
- arxiv url: http://arxiv.org/abs/2411.15626v1
- Date: Sat, 23 Nov 2024 18:36:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:21:33.840621
- Title: Aligning Generalisation Between Humans and Machines
- Title(参考訳): 人間と機械の一般化の調整
- Authors: Filip Ilievski, Barbara Hammer, Frank van Harmelen, Benjamin Paassen, Sascha Saralajew, Ute Schmid, Michael Biehl, Marianna Bolognesi, Xin Luna Dong, Kiril Gashteovski, Pascal Hitzler, Giuseppe Marra, Pasquale Minervini, Martin Mundt, Axel-Cyrille Ngonga Ngomo, Alessandro Oltramari, Gabriella Pasi, Zeynep G. Saribatur, Luciano Serafini, John Shawe-Taylor, Vered Shwartz, Gabriella Skitalinskaya, Clemens Stachl, Gido M. van de Ven, Thomas Villmann,
- Abstract要約: 近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
- 参考スコア(独自算出の注目度): 74.120848518198
- License:
- Abstract: Recent advances in AI -- including generative approaches -- have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals. The responsible use of AI increasingly shows the need for human-AI teaming, necessitating effective interaction between humans and machines. A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise. In cognitive science, human generalisation commonly involves abstraction and concept learning. In contrast, AI generalisation encompasses out-of-domain generalisation in machine learning, rule-based reasoning in symbolic AI, and abstraction in neuro-symbolic AI. In this perspective paper, we combine insights from AI and cognitive science to identify key commonalities and differences across three dimensions: notions of generalisation, methods for generalisation, and evaluation of generalisation. We map the different conceptualisations of generalisation in AI and cognitive science along these three dimensions and consider their role in human-AI teaming. This results in interdisciplinary challenges across AI and cognitive science that must be tackled to provide a foundation for effective and cognitively supported alignment in human-AI teaming scenarios.
- Abstract(参考訳): 生成的アプローチを含むAIの最近の進歩は、科学的発見と意思決定支援において人間を支援することができる技術をもたらしたが、民主主義や個人を妨害する可能性がある。
責任あるAIの使用は、人間とAIのコラボレーションの必要性をますます示し、人間と機械の効果的な相互作用を必要としている。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
認知科学において、人間の一般化は一般的に抽象と概念学習を包含する。
対照的に、AIの一般化は、機械学習の領域外一般化、象徴的AIのルールベースの推論、ニューロシンボリックAIの抽象化を含む。
本稿では,AIと認知科学の知見を組み合わせて,一般化の概念,一般化の方法,一般化の評価という3つの次元における重要な共通点と相違点を同定する。
これら3つの側面に沿って、AIと認知科学における一般化の異なる概念をマッピングし、人間-AIチームにおけるそれらの役割について考察する。
この結果、AIと認知科学にまたがる学際的な課題が生じ、人間とAIのコラボレーションシナリオにおいて効果的で認知的に支援されたアライメントの基盤を提供するために取り組まなければならない。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - The Interplay of Learning, Analytics, and Artificial Intelligence in Education: A Vision for Hybrid Intelligence [0.45207442500313766]
私は、AIのツールとしての狭義の概念化に挑戦し、AIの代替概念化の重要性を主張します。
人工知能と人工情報処理の違いを強調し、AIが人間の学習を理解するための道具としても役立つことを実証する。
本稿では、人間の認知の外部化、人間のメンタルモデルに影響を与えるAIモデルの内部化、密結合された人間とAIハイブリッドインテリジェンスシステムによる人間の認知の拡張という、AIのユニークな概念化について述べる。
論文 参考訳(メタデータ) (2024-03-24T10:07:46Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AIは、人間とAIアルゴリズムが相互に連続的に影響を及ぼすプロセスである。
本稿では,AIと複雑性科学の交点における新たな研究分野の基盤として,Coevolution AIを紹介した。
論文 参考訳(メタデータ) (2023-06-23T18:10:54Z) - BIASeD: Bringing Irrationality into Automated System Design [12.754146668390828]
我々は、人間と機械のコラボレーションの未来は、人間の認知バイアスをモデル化し、理解し、おそらく複製するAIシステムの開発を必要とすると主張している。
我々は、AIシステムの観点から既存の認知バイアスを分類し、3つの幅広い関心領域を特定し、私たちのバイアスをよりよく理解するAIシステムの設計のための研究の方向性を概説する。
論文 参考訳(メタデータ) (2022-10-01T02:52:38Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - AI-Mediated Exchange Theory [9.100327242239203]
本稿では,AI-Mediated Exchange Theory(AI-MET)の開発を提案する。
社会科学における社会交換理論(SET)の拡張として、AI-METはAIを仲介機構の分類によって人間と人間の関係に影響を与えるものとみなしている。
論文 参考訳(メタデータ) (2020-03-04T14:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。