論文の概要: Sound Event Detection with Binary Neural Networks on Tightly
Power-Constrained IoT Devices
- arxiv url: http://arxiv.org/abs/2101.04446v1
- Date: Tue, 12 Jan 2021 12:38:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-04 01:34:44.605484
- Title: Sound Event Detection with Binary Neural Networks on Tightly
Power-Constrained IoT Devices
- Title(参考訳): 二成分ニューラルネットワークによる高出力IoTデバイス上の音事象検出
- Authors: Gianmarco Cerutti, Renzo Andri, Lukas Cavigelli, Michele Magno,
Elisabetta Farella, Luca Benini
- Abstract要約: サウンドイベント検出(SED)は、消費者およびスマートシティアプリケーションのホットトピックです。
Deep Neural Networksに基づく既存のアプローチは非常に効果的ですが、メモリ、電力、スループットの面で非常に要求が高いです。
本稿では,高エネルギー効率なRISC-V(8+1)コアGAP8マイクロコントローラと,極端量子化と小プリントバイナリニューラルネットワーク(BNN)の組み合わせについて検討する。
- 参考スコア(独自算出の注目度): 20.349809458335532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sound event detection (SED) is a hot topic in consumer and smart city
applications. Existing approaches based on Deep Neural Networks are very
effective, but highly demanding in terms of memory, power, and throughput when
targeting ultra-low power always-on devices.
Latency, availability, cost, and privacy requirements are pushing recent IoT
systems to process the data on the node, close to the sensor, with a very
limited energy supply, and tight constraints on the memory size and processing
capabilities precluding to run state-of-the-art DNNs.
In this paper, we explore the combination of extreme quantization to a
small-footprint binary neural network (BNN) with the highly energy-efficient,
RISC-V-based (8+1)-core GAP8 microcontroller. Starting from an existing CNN for
SED whose footprint (815 kB) exceeds the 512 kB of memory available on our
platform, we retrain the network using binary filters and activations to match
these memory constraints. (Fully) binary neural networks come with a natural
drop in accuracy of 12-18% on the challenging ImageNet object recognition
challenge compared to their equivalent full-precision baselines. This BNN
reaches a 77.9% accuracy, just 7% lower than the full-precision version, with
58 kB (7.2 times less) for the weights and 262 kB (2.4 times less) memory in
total. With our BNN implementation, we reach a peak throughput of 4.6 GMAC/s
and 1.5 GMAC/s over the full network, including preprocessing with Mel bins,
which corresponds to an efficiency of 67.1 GMAC/s/W and 31.3 GMAC/s/W,
respectively. Compared to the performance of an ARM Cortex-M4 implementation,
our system has a 10.3 times faster execution time and a 51.1 times higher
energy-efficiency.
- Abstract(参考訳): サウンドイベント検出(SED)は、消費者およびスマートシティアプリケーションにおいてホットなトピックである。
ディープニューラルネットワークに基づく既存のアプローチは非常に効果的だが、超低消費電力の常時オンデバイスをターゲットにする場合、メモリ、電力、スループットの面で非常に要求される。
レイテンシ、可用性、コスト、プライバシ要件は、最新のIoTシステムに対して、センサに近いノード上でデータを処理し、非常に限られたエネルギー供給と、最先端のDNNを実行する前にメモリサイズと処理能力に厳しい制約を課している。
本稿では,高エネルギー効率なRISC-V(8+1)コアGAP8マイクロコントローラと,極端量子化と小フットプリント型バイナリニューラルネットワーク(BNN)の組み合わせについて検討する。
既存のSED用CNNのフットプリント(815kB)が、当社プラットフォームで利用可能なメモリ512kBを超えていることから、バイナリフィルタとアクティベーションを使用してネットワークを再トレーニングし、これらのメモリ制約を満たす。
完全な)バイナリニューラルネットワークは、同等の完全精度のベースラインに比べて、難しいImageNetオブジェクト認識チャレンジにおいて、12-18%の精度が自然に低下する。
このBNNは77.9%の精度に達し、全精度版よりわずか7%低く、重量は58kB(7.2倍)、メモリは262kB(2.4倍)である。
BNNの実装では,全ネットワーク上での最大スループットは4.6 GMAC/sと1.5 GMAC/sで,それぞれ67.1 GMAC/s/W,31.3 GMAC/s/Wの効率に対応するMel binsによる前処理を含む。
ARM Cortex-M4の実装と比較して、我々のシステムは実行時間が10.3倍速く、エネルギー効率が51.1倍高い。
関連論文リスト
- Spiker+: a framework for the generation of efficient Spiking Neural
Networks FPGA accelerators for inference at the edge [49.42371633618761]
Spiker+はFPGA上で、エッジでの推論のために効率よく、低消費電力で、低領域でカスタマイズされたSpking Neural Networks(SNN)アクセラレータを生成するためのフレームワークである。
Spiker+ は MNIST と Spiking Heidelberg Digits (SHD) の2つのベンチマークデータセットでテストされている。
論文 参考訳(メタデータ) (2024-01-02T10:42:42Z) - Sparse Compressed Spiking Neural Network Accelerator for Object
Detection [0.1246030133914898]
スパイキングニューラルネットワーク(SNN)は、人間の脳にインスパイアされ、バイナリスパイクと非常にスパースなアクティベーションマップを送信する。
本稿では, 活性化マップと重みの疎度を生かした, スパース圧縮スパイクニューラルネットワーク加速器を提案する。
ニューラルネットワークの実験結果は、71.5$%$mAPで、ISV 3clsデータセットの混合(1,3)タイムステップを示している。
論文 参考訳(メタデータ) (2022-05-02T09:56:55Z) - BottleFit: Learning Compressed Representations in Deep Neural Networks
for Effective and Efficient Split Computing [48.11023234245863]
圧縮速度が強い場合でも高い精度を達成するための新しいトレーニング戦略を含む,BottleFitと呼ばれる新しいフレームワークを提案する。
BottleFitは77.1%のデータ圧縮を実現し、ImageNetデータセットでは最大で0.6%の精度でロスする。
本稿では,BottleFitが消費電力とレイテンシを最大で49%,(w.r.t.)ローカルコンピューティングでは89%,エッジオフロードでは37%,W.r.t.エッジオフロードでは55%削減することを示した。
論文 参考訳(メタデータ) (2022-01-07T22:08:07Z) - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [72.80896338009579]
メモリボトルネックは畳み込みニューラルネットワーク(CNN)の設計における不均衡なメモリ分布に起因する。
本稿では,ピークメモリを大幅に削減するパッチ・バイ・パッチ・推論スケジューリングを提案する。
ニューラルアーキテクチャサーチによるプロセスを自動化し、ニューラルアーキテクチャと推論スケジューリングを共同で最適化し、MCUNetV2に導いた。
論文 参考訳(メタデータ) (2021-10-28T17:58:45Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
大規模グラフの構造を学ぶためにGNN(Graph Neural Networks)のフルバッチトレーニングは、実現可能な数百の計算ノードにスケールする必要がある重要な問題です。
本稿では,CPUクラスタ上でのフルバッチトレーニングのためのDGL(Deep Graph Library)を最適化したGNNについて述べる。
4つの一般的なGNNベンチマークデータセットの結果は、1つのCPUソケットを使用して最大3.7倍のスピードアップ、128のCPUソケットを使用して最大97倍のスピードアップを示す。
論文 参考訳(メタデータ) (2021-04-14T08:46:35Z) - Fast Implementation of 4-bit Convolutional Neural Networks for Mobile
Devices [0.8362190332905524]
量子化ニューラルネットワークにおける4ビット行列乗算の効率的な実装について述べる。
また、MIDV-500データセット上でOCR認識のための4ビット量子化ニューラルネットワークを実演する。
その結果、4ビット量子化はモバイルデバイスに完全に適合し、十分な精度と推論時間が得られることがわかった。
論文 参考訳(メタデータ) (2020-09-14T14:48:40Z) - TinyRadarNN: Combining Spatial and Temporal Convolutional Neural
Networks for Embedded Gesture Recognition with Short Range Radars [13.266626571886354]
本研究は,バッテリ操作型ウェアラブルデバイスを対象とした,低消費電力な組込み手位置認識アルゴリズムを提案する。
範囲周波数ドップラー特徴を用いた2次元畳み込みニューラルネットワーク(CNN)と時間列予測のための時間畳み込みニューラルネットワーク(TCN)を組み合わせる。
論文 参考訳(メタデータ) (2020-06-25T15:23:21Z) - Q-EEGNet: an Energy-Efficient 8-bit Quantized Parallel EEGNet
Implementation for Edge Motor-Imagery Brain--Machine Interfaces [16.381467082472515]
運動画像脳-機械インタフェース(MI-BMI)は、人間の脳と機械間の直接的かつアクセス可能なコミュニケーションをプロミットする。
脳波信号を分類するためのディープラーニングモデルが登場した。
これらのモデルは、メモリと計算要求のため、エッジデバイスの限界を超えることが多い。
論文 参考訳(メタデータ) (2020-04-24T12:29:03Z) - Near-chip Dynamic Vision Filtering for Low-Bandwidth Pedestrian
Detection [99.94079901071163]
本稿では、ダイナミックビジョンセンサ(DVS)を用いた歩行者検出のための新しいエンドツーエンドシステムを提案する。
我々は、複数のセンサがローカル処理ユニットにデータを送信し、検出アルゴリズムを実行するアプリケーションをターゲットにしている。
我々の検出器は450ミリ秒毎に検出を行うことができ、総合的なテストF1スコアは83%である。
論文 参考訳(メタデータ) (2020-04-03T17:36:26Z) - Compact recurrent neural networks for acoustic event detection on
low-energy low-complexity platforms [10.04812789957562]
本稿では,IoT 用リソース制約組込みプラットフォームにおける深層学習手法を最適化することにより,エッジでの音声イベント検出の適用について述べる。
2段階の学生-教師のアプローチは、現在のマイクロコントローラに適合する音のイベント検出のための最先端のニューラルネットワークを実現するために提案される。
組込み実装はUrbansound8kの認識精度を68%向上させることができる。
論文 参考訳(メタデータ) (2020-01-29T14:56:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。