論文の概要: Sparse Compressed Spiking Neural Network Accelerator for Object
Detection
- arxiv url: http://arxiv.org/abs/2205.00778v1
- Date: Mon, 2 May 2022 09:56:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-03 20:45:55.858905
- Title: Sparse Compressed Spiking Neural Network Accelerator for Object
Detection
- Title(参考訳): オブジェクト検出のためのスパース圧縮スパイクニューラルネットワークアクセラレータ
- Authors: Hong-Han Lien and Tian-Sheuan Chang
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、人間の脳にインスパイアされ、バイナリスパイクと非常にスパースなアクティベーションマップを送信する。
本稿では, 活性化マップと重みの疎度を生かした, スパース圧縮スパイクニューラルネットワーク加速器を提案する。
ニューラルネットワークの実験結果は、71.5$%$mAPで、ISV 3clsデータセットの混合(1,3)タイムステップを示している。
- 参考スコア(独自算出の注目度): 0.1246030133914898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural networks (SNNs), which are inspired by the human brain, have
recently gained popularity due to their relatively simple and low-power
hardware for transmitting binary spikes and highly sparse activation maps.
However, because SNNs contain extra time dimension information, the SNN
accelerator will require more buffers and take longer to infer, especially for
the more difficult high-resolution object detection task. As a result, this
paper proposes a sparse compressed spiking neural network accelerator that
takes advantage of the high sparsity of activation maps and weights by
utilizing the proposed gated one-to-all product for low power and highly
parallel model execution. The experimental result of the neural network shows
71.5$\%$ mAP with mixed (1,3) time steps on the IVS 3cls dataset. The
accelerator with the TSMC 28nm CMOS process can achieve 1024$\times$576@29
frames per second processing when running at 500MHz with 35.88TOPS/W energy
efficiency and 1.05mJ energy consumption per frame.
- Abstract(参考訳): 人間の脳にインスパイアされたスパイキングニューラルネットワーク(SNN)は、最近、バイナリスパイクを伝達する比較的シンプルで低消費電力のハードウェアと、疎いアクティベーションマップによって人気を集めている。
しかし、SNNには余分な時間次元情報が含まれているため、SNNアクセラレータはバッファを多く必要とし、特により難しい高解像度オブジェクト検出タスクのために推論に時間がかかる。
そこで本研究では,低消費電力かつ高並列なモデル実行のためのゲート1対全生成物を用いて,活性化マップと重みの高間隔を生かしたスパース圧縮スパイクニューラルネットワークアクセラレータを提案する。
ニューラルネットワークの実験結果は、ivs 3clsデータセット上で混合(1,3)時間ステップを持つ71.5$\%$マップを示す。
TSMC 28nm CMOSプロセスを搭載したアクセラレータは、500MHzで動作する場合、毎秒1024$\times$576@29フレーム、35.88TOPS/Wエネルギー効率と1.05mJエネルギー消費を実現している。
関連論文リスト
- Spiker+: a framework for the generation of efficient Spiking Neural
Networks FPGA accelerators for inference at the edge [49.42371633618761]
Spiker+はFPGA上で、エッジでの推論のために効率よく、低消費電力で、低領域でカスタマイズされたSpking Neural Networks(SNN)アクセラレータを生成するためのフレームワークである。
Spiker+ は MNIST と Spiking Heidelberg Digits (SHD) の2つのベンチマークデータセットでテストされている。
論文 参考訳(メタデータ) (2024-01-02T10:42:42Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
畳み込みのような機能を提供する軽量神経オペレータであるEpitomeを紹介する。
ソフトウェア側では,PIMアクセラレータ上でのエピトームのレイテンシとエネルギを評価する。
ハードウェア効率を向上させるため,PIM対応層設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T17:56:39Z) - Highly Efficient SNNs for High-speed Object Detection [7.3074002563489024]
実験結果から, 物体検出タスクにおいて, 1.5MBのパラメータしか持たないGPU上で, 効率的なSNNが118倍の高速化を実現できることが示唆された。
FPGAプラットフォーム上でのSNNをさらに検証し,800以上のFPSオブジェクトを極めて低レイテンシで検出できるモデルを提案する。
論文 参考訳(メタデータ) (2023-09-27T10:31:12Z) - A Resource-efficient Spiking Neural Network Accelerator Supporting
Emerging Neural Encoding [6.047137174639418]
スパイキングニューラルネットワーク(SNN)は、その低消費電力乗算自由コンピューティングにより、最近勢いを増している。
SNNは、大規模なモデルのための人工知能ニューラルネットワーク(ANN)と同様の精度に達するために、非常に長いスパイク列車(1000台まで)を必要とする。
ニューラルエンコーディングでSNNを効率的にサポートできる新しいハードウェアアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-06T10:56:25Z) - Efficient Hardware Acceleration of Sparsely Active Convolutional Spiking
Neural Networks [0.0]
スパイキングニューラルネットワーク(SNN)は、標準のニューラルネットワークよりも効率的な計算を実現するために、イベントベースで計算する。
本稿では,高いアクティベーション間隔を有する畳み込みSNNの処理に最適化された新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-03-23T14:18:58Z) - BiFSMN: Binary Neural Network for Keyword Spotting [47.46397208920726]
BiFSMNは、KWSのための正確かつ極効率のバイナリニューラルネットワークである。
実世界のエッジハードウェアにおいて,BiFSMNは22.3倍の高速化と15.5倍のストレージ節約を実現可能であることを示す。
論文 参考訳(メタデータ) (2022-02-14T05:16:53Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - Sound Event Detection with Binary Neural Networks on Tightly
Power-Constrained IoT Devices [20.349809458335532]
サウンドイベント検出(SED)は、消費者およびスマートシティアプリケーションのホットトピックです。
Deep Neural Networksに基づく既存のアプローチは非常に効果的ですが、メモリ、電力、スループットの面で非常に要求が高いです。
本稿では,高エネルギー効率なRISC-V(8+1)コアGAP8マイクロコントローラと,極端量子化と小プリントバイナリニューラルネットワーク(BNN)の組み合わせについて検討する。
論文 参考訳(メタデータ) (2021-01-12T12:38:23Z) - A Spike in Performance: Training Hybrid-Spiking Neural Networks with
Quantized Activation Functions [6.574517227976925]
Spiking Neural Network(SNN)は、エネルギー効率の高いコンピューティングに対する有望なアプローチである。
我々は、非スパイキングネットワークをSNNに変換する際に、最先端の精度を維持する方法を示す。
論文 参考訳(メタデータ) (2020-02-10T05:24:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。