論文の概要: Digital Elevation Model enhancement using Deep Learning
- arxiv url: http://arxiv.org/abs/2101.04812v1
- Date: Wed, 13 Jan 2021 00:07:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 08:02:34.547979
- Title: Digital Elevation Model enhancement using Deep Learning
- Title(参考訳): 深層学習を用いたディジタル標高モデルの強化
- Authors: Casey Handmer
- Abstract要約: 畳み込みニューラルネットワークを用いた光学画像と深層学習を用いた惑星デジタル高度モデル(DEM)の高忠実度向上を実証する。
深層学習に基づくフォトクリノメトリは、非理想的な照明条件によって見えない特徴を頑健に回復する。
解析の結果,DEM傾斜誤差は従来の労働集約手法を用いた高分解能マップに匹敵することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate high fidelity enhancement of planetary digital elevation
models (DEMs) using optical images and deep learning with convolutional neural
networks. Enhancement can be applied recursively to the limit of available
optical data, representing a 90x resolution improvement in global Mars DEMs.
Deep learning-based photoclinometry robustly recovers features obscured by
non-ideal lighting conditions. Method can be automated at global scale.
Analysis shows enhanced DEM slope errors are comparable with high resolution
maps using conventional, labor intensive methods.
- Abstract(参考訳): 我々は、光学画像と畳み込みニューラルネットワークを用いた深層学習を用いて、惑星デジタル標高モデル(DEM)の高忠実性向上を示す。
拡張は利用可能な光学データの限界に再帰的に適用することができ、地球規模の火星DEMの90倍の解像度向上を示す。
深層学習に基づくフォトクリノメトリは、非理想的な照明条件によって不明瞭に特徴を回復する。
方法はグローバルスケールで自動化できる。
解析の結果,DEM傾斜誤差は従来の労働集約手法を用いた高分解能マップに匹敵することがわかった。
関連論文リスト
- SIRAN: Sinkhorn Distance Regularized Adversarial Network for DEM
Super-resolution using Discriminative Spatial Self-attention [5.178465447325005]
DEM(Digital Elevation Model)は、リモートセンシング領域において、表面標高情報に関連するさまざまなアプリケーションを分析し、探索するための重要な側面である。
本研究では,高分解能マルチスペクトル(MX)衛星画像を用いた高分解能DEMの生成について検討する。
本稿では,Sinkhorn 距離を従来の GAN に最適化することで,対角学習の安定性を向上する目的関数を提案する。
論文 参考訳(メタデータ) (2023-11-27T12:03:22Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
低照度環境は通常、情報の少ない大規模な暗黒地帯に繋がる。
本稿では,ガンマ補正の有効性を深層ネットワークのモデリング能力と統合することを提案する。
指数関数演算は高い計算複雑性をもたらすので、Taylor Series を用いてガンマ補正を近似することを提案する。
論文 参考訳(メタデータ) (2023-08-16T08:46:51Z) - LLDiffusion: Learning Degradation Representations in Diffusion Models
for Low-Light Image Enhancement [118.83316133601319]
現在の低照度画像強調(LLIE)の深層学習法は、通常、ペア化されたデータから学んだピクセルワイドマッピングに依存している。
本稿では,拡散モデルを用いたLLIEの劣化認識学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-27T07:22:51Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - Deep Learning Methods for Calibrated Photometric Stereo and Beyond [86.57469194387264]
光度ステレオは、さまざまなシェーディングキューを持つ複数の画像から物体の表面の正常性を回復する。
深層学習法は、非ランベルト面に対する測光ステレオの文脈において強力な能力を示している。
論文 参考訳(メタデータ) (2022-12-16T11:27:44Z) - High-Frequency aware Perceptual Image Enhancement [0.08460698440162888]
マルチスケール解析に適した新しいディープニューラルネットワークを導入し,効率的なモデルに依存しない手法を提案する。
本モデルは,デノイング,デブロアリング,単一画像超解像などのマルチスケール画像強調問題に適用できる。
論文 参考訳(メタデータ) (2021-05-25T07:33:14Z) - Towards High Fidelity Monocular Face Reconstruction with Rich
Reflectance using Self-supervised Learning and Ray Tracing [49.759478460828504]
ディープニューラルネットワークエンコーダと異なるレンダリングを組み合わせた手法が、幾何学、照明、反射の非常に高速な単分子再構成の道を開いた。
古典的な最適化ベースのフレームワーク内での単眼顔再構築のためにレイトレースが導入されました。
一般シーンにおける復元品質と堅牢性を大幅に向上させる新しい手法を提案します。
論文 参考訳(メタデータ) (2021-03-29T08:58:10Z) - AFN: Attentional Feedback Network based 3D Terrain Super-Resolution [5.349223987137843]
低分解能ディジタル標高モデル(LRDEM)の高分解能化を目的とした,完全畳み込みニューラルネットワークに基づく新しい超解像アーキテクチャを提案する。
我々は、LRDEMと空中画像の情報を選択的に融合させ、高周波の特徴を増強し、現実的に地形を創出する「注意フィードバックネットワーク(AFN)」と呼ばれる注意ベースのフィードバック機構を用いて、LRDEMの超解像を行う。
論文 参考訳(メタデータ) (2020-10-04T16:51:39Z) - Feedback Neural Network based Super-resolution of DEM for generating
high fidelity features [4.722870664660785]
低分解能DEMに繰り返し高頻度の詳細を追加することを学習する新しいニューラルネットワークアーキテクチャを提案する。
我々のネットワークDSRFBは、4つの異なるデータセットにわたるRMSEの0.59から1.27を達成する。
論文 参考訳(メタデータ) (2020-07-03T21:10:19Z) - Improved Techniques for Training Score-Based Generative Models [104.20217659157701]
本研究では,高次元空間におけるスコアモデルからの学習とサンプリングに関する新しい理論的解析を行う。
スコアベースの生成モデルを前例のない解像度で画像に拡張することができる。
我々のスコアベースモデルは、様々な画像データセットで最良クラスGANに匹敵する高忠実度サンプルを生成することができる。
論文 参考訳(メタデータ) (2020-06-16T09:17:17Z) - D-SRGAN: DEM Super-Resolution with Generative Adversarial Networks [0.0]
LIDARデータはDEM(Digital Elevation Models)の主要な情報源として利用されている。
DEMは道路抽出、水文モデリング、洪水マッピング、表面分析など様々な用途で使用されている。
ディープラーニング技術は、高解像度データセットからの学習機能のパフォーマンスが研究者にとって魅力的なものになっている。
論文 参考訳(メタデータ) (2020-04-09T19:57:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。