論文の概要: Explainability of vision-based autonomous driving systems: Review and
challenges
- arxiv url: http://arxiv.org/abs/2101.05307v1
- Date: Wed, 13 Jan 2021 19:09:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 08:08:07.961787
- Title: Explainability of vision-based autonomous driving systems: Review and
challenges
- Title(参考訳): ビジョンに基づく自律運転システムの説明可能性:レビューと課題
- Authors: \'Eloi Zablocki, H\'edi Ben-Younes, Patrick P\'erez, Matthieu Cord
- Abstract要約: 説明可能性の必要性は運転で強く、安全クリティカルなアプリケーションです。
この調査は、コンピュータビジョン、ディープラーニング、自動運転、説明可能なAI(X-AI)など、いくつかの研究分野から貢献を集めています。
- 参考スコア(独自算出の注目度): 33.720369945541805
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This survey reviews explainability methods for vision-based self-driving
systems. The concept of explainability has several facets and the need for
explainability is strong in driving, a safety-critical application. Gathering
contributions from several research fields, namely computer vision, deep
learning, autonomous driving, explainable AI (X-AI), this survey tackles
several points. First, it discusses definitions, context, and motivation for
gaining more interpretability and explainability from self-driving systems.
Second, major recent state-of-the-art approaches to develop self-driving
systems are quickly presented. Third, methods providing explanations to a
black-box self-driving system in a post-hoc fashion are comprehensively
organized and detailed. Fourth, approaches from the literature that aim at
building more interpretable self-driving systems by design are presented and
discussed in detail. Finally, remaining open-challenges and potential future
research directions are identified and examined.
- Abstract(参考訳): 本調査は,視覚に基づく自動運転システムの説明可能性について検討する。
説明可能性の概念にはいくつかの側面があり、説明可能性の必要性は運転において強い。
コンピュータビジョン、ディープラーニング、自動運転、説明可能なAI(X-AI)など、いくつかの研究分野からのコントリビューションを集め、この調査はいくつかの点に取り組む。
まず、自動運転システムからより解釈可能性と説明可能性を得るための定義、文脈、モチベーションについて論じる。
第2に、自動運転システムを開発するための最先端のアプローチが、すぐに紹介される。
第3に、ポストホック方式でブラックボックス自動運転システムに説明を提供する手法を包括的に整理し、詳述する。
第4に、より解釈可能な自動運転システムを設計により構築することを目的とした文献からのアプローチを提示し、詳述する。
最後に, 残りの開水路と今後の研究方向性を特定し, 検討した。
関連論文リスト
- Advancing Autonomous Driving Perception: Analysis of Sensor Fusion and Computer Vision Techniques [0.0]
このプロジェクトは、自動運転ロボットの理解とナビゲーション能力の向上に焦点を当てている。
既存の検出と追跡アルゴリズムを用いて、未知のマップ2Dマップへのより良いナビゲーションを実現する方法について検討する。
論文 参考訳(メタデータ) (2024-11-15T19:11:58Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving [4.1636282808157254]
エンドツーエンドの学習パイプラインは、高度に自律的な車両の開発におけるパラダイムシフトを徐々に生み出している。
現代の学習手法によるリアルタイム意思決定における解釈可能性の欠如は、ユーザの信頼を阻害し、そのような車両の広範な展開と商業化を阻害する。
この調査は、質問に答えようとしている。いつ、どのように説明がエンドツーエンドの自動運転の安全性を改善することができるのか?
論文 参考訳(メタデータ) (2024-03-18T18:49:20Z) - Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges and Future Directions [2.693342141713236]
本稿では,過去10年間に出版されたコンピュータビジョンと自動運転に関する論文をレビューする。
特に、まず自律運転システムの開発について検討し、各国の主要自動車メーカーによって開発されたこれらのシステムを要約する。
そこで, 深度推定, 物体検出, 車線検出, 信号認識など, 自律運転におけるコンピュータビジョン応用の概要を概観する。
論文 参考訳(メタデータ) (2023-11-15T16:41:18Z) - On the Road with GPT-4V(ision): Early Explorations of Visual-Language
Model on Autonomous Driving [37.617793990547625]
本報告では,最新のVLMであるGPT-4Vの徹底的な評価を行う。
我々は、シーンを駆動し、決定を下し、最終的にはドライバーの能力で行動する、モデルを理解する能力について探求する。
GPT-4Vは,既存の自律システムと比較して,シーン理解や因果推論において優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-09T12:58:37Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
本稿では、画像とテキストで検索可能な表現から、運転決定を提供することができる、エンドツーエンドのオープンセット(環境/シーン)自律運転を適用するアプローチを提案する。
当社のアプローチでは, 多様なテストにおいて非並列的な結果を示すと同時に, アウト・オブ・ディストリビューションの状況において, はるかに高いロバスト性を実現している。
論文 参考訳(メタデータ) (2023-10-26T17:56:35Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - A Survey of End-to-End Driving: Architectures and Training Methods [0.9449650062296824]
私たちは、運転パイプライン全体を1つのニューラルネットワークに置き換える、いわゆるエンドツーエンドの自動運転アプローチについて、より深く検討しています。
本稿では,エンド・ツー・エンド駆動文学における学習方法,入力・出力モダリティ,ネットワークアーキテクチャ,評価スキームについてレビューする。
我々は、エンドツーエンドの自動運転システムの最も有望な要素を組み合わせたアーキテクチャでレビューを締めくくります。
論文 参考訳(メタデータ) (2020-03-13T17:42:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。