Towards Creating a Deployable Grasp Type Probability Estimator for a
Prosthetic Hand
- URL: http://arxiv.org/abs/2101.05357v1
- Date: Wed, 13 Jan 2021 21:39:41 GMT
- Title: Towards Creating a Deployable Grasp Type Probability Estimator for a
Prosthetic Hand
- Authors: Mehrshad Zandigohar, Mo Han, Deniz Erdogmus, and Gunar Schirner
- Abstract summary: InceptionV3 achieves highest accuracy with 0.95 angular similarity followed by 1.4 MobileNetV2 with 0.93 at 20% the amount of operations.
Our work enables augmenting EMG intent inference with physical state probability through machine learning and computer vision method.
- Score: 11.008123712007402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For lower arm amputees, prosthetic hands promise to restore most of physical
interaction capabilities. This requires to accurately predict hand gestures
capable of grabbing varying objects and execute them timely as intended by the
user. Current approaches often rely on physiological signal inputs such as
Electromyography (EMG) signal from residual limb muscles to infer the intended
motion. However, limited signal quality, user diversity and high variability
adversely affect the system robustness. Instead of solely relying on EMG
signals, our work enables augmenting EMG intent inference with physical state
probability through machine learning and computer vision method. To this end,
we: (1) study state-of-the-art deep neural network architectures to select a
performant source of knowledge transfer for the prosthetic hand, (2) use a
dataset containing object images and probability distribution of grasp types as
a new form of labeling where instead of using absolute values of zero and one
as the conventional classification labels, our labels are a set of
probabilities whose sum is 1. The proposed method generates probabilistic
predictions which could be fused with EMG prediction of probabilities over
grasps by using the visual information from the palm camera of a prosthetic
hand. Our results demonstrate that InceptionV3 achieves highest accuracy with
0.95 angular similarity followed by 1.4 MobileNetV2 with 0.93 at ~20% the
amount of operations.
Related papers
- Online Adaptation for Myographic Control of Natural Dexterous Hand and Finger Movements [0.6741087029030101]
This work redefines the state-of-the-art in myographic decoding in terms of the reliability, responsiveness, and movement complexity available from prosthesis control systems.
arXiv Detail & Related papers (2024-12-23T21:20:32Z) - Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration [49.03824084306578]
We propose to incorporate a physical inductive bias into the neural network calibration architecture to enhance the robustness and the trustworthiness of the AI target application.
We pave the way for a trustworthy uncertainty representation and for a holistic verification strategy of the perception chain.
arXiv Detail & Related papers (2024-12-18T10:36:46Z) - Deep Learning for Motion Classification in Ankle Exoskeletons Using Surface EMG and IMU Signals [0.8388591755871735]
Ankle exoskeletons have garnered considerable interest for their potential to enhance mobility and reduce fall risks.
This paper presents a novel motion prediction framework that integrates three Inertial Measurement Units (IMUs) and eight surface Electromyography (sEMG) sensors.
Our findings reveal that Convolutional Neural Networks (CNNs) slightly outperform Long Short-Term Memory (LSTM) networks on a dataset of five motion tasks.
arXiv Detail & Related papers (2024-11-25T10:51:40Z) - emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography [47.160223334501126]
emg2qwerty is a large-scale dataset of non-invasive electromyographic signals recorded at the wrists while touch typing on a QWERTY keyboard.
With 1,135 sessions spanning 108 users and 346 hours of recording, this is the largest such public dataset to date.
We show strong baseline performance on predicting key-presses using sEMG signals alone.
arXiv Detail & Related papers (2024-10-26T05:18:48Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
noisy and poor-quality recordings are a major issue for signals collected using mobile health systems.
Recent studies have explored the imputation of missing values in ECG with probabilistic time-series models.
We present a template-guided denoising diffusion probabilistic model (DDPM), PulseDiff, which is conditioned on an informative prior for a range of health conditions.
arXiv Detail & Related papers (2023-10-24T11:34:15Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
We introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics.
Ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset.
Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.
arXiv Detail & Related papers (2021-04-29T00:11:32Z) - Multimodal Fusion of EMG and Vision for Human Grasp Intent Inference in
Prosthetic Hand Control [11.400385533782204]
We present a Bayesian evidence fusion framework for grasp intent inference using eye-view video, eye-gaze, and EMG from the forearm.
We analyze individual and fused performance as a function of time as the hand approaches the object to grasp it.
arXiv Detail & Related papers (2021-04-08T17:01:19Z) - From Hand-Perspective Visual Information to Grasp Type Probabilities:
Deep Learning via Ranking Labels [6.772076545800592]
We build a novel probabilistic classifier according to the Plackett-Luce model to predict the probability distribution over grasps.
We indicate that the proposed model is applicable to the most popular and productive convolutional neural network frameworks.
arXiv Detail & Related papers (2021-03-08T16:12:38Z) - Effect of Analysis Window and Feature Selection on Classification of
Hand Movements Using EMG Signal [0.20999222360659603]
Recently, research on myoelectric control based on pattern recognition (PR) shows promising results with the aid of machine learning classifiers.
By offering multiple class movements and intuitive control, this method has the potential to power an amputated subject to perform everyday life movements.
We show that effective data preprocessing and optimum feature selection helps to improve the classification accuracy of hand movements.
arXiv Detail & Related papers (2020-02-02T19:03:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.