Optimal Energy Shaping via Neural Approximators
- URL: http://arxiv.org/abs/2101.05537v1
- Date: Thu, 14 Jan 2021 10:25:58 GMT
- Title: Optimal Energy Shaping via Neural Approximators
- Authors: Stefano Massaroli, Michael Poli, Federico Califano, Jinkyoo Park,
Atsushi Yamashita and Hajime Asama
- Abstract summary: We introduce optimal energy shaping as an enhancement of classical passivity-based control methods.
A systematic approach to adjust performance within a passive control framework has yet to be developed.
- Score: 16.879710744315233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce optimal energy shaping as an enhancement of classical
passivity-based control methods. A promising feature of passivity theory,
alongside stability, has traditionally been claimed to be intuitive performance
tuning along the execution of a given task. However, a systematic approach to
adjust performance within a passive control framework has yet to be developed,
as each method relies on few and problem-specific practical insights. Here, we
cast the classic energy-shaping control design process in an optimal control
framework; once a task-dependent performance metric is defined, an optimal
solution is systematically obtained through an iterative procedure relying on
neural networks and gradient-based optimization. The proposed method is
validated on state-regulation tasks.
Related papers
- Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems [4.05766189327054]
Hamiltonian-Informed Optimal Neural (Hion) controllers are a novel class of neural network-based controllers for dynamical systems.
Hion controllers estimate future states and compute optimal control inputs using Pontryagin's Principle.
arXiv Detail & Related papers (2024-11-02T16:06:29Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Adaptive Bayesian Optimization for High-Precision Motion Systems [2.073673208115137]
We propose a real-time purely data-driven, model-free approach for adaptive control, by online tuning low-level controller parameters.
We base our algorithm on GoOSE, an algorithm for safe and sample-efficient Bayesian optimization.
We evaluate the algorithm's performance on a real precision-motion system utilized in semiconductor industry applications.
arXiv Detail & Related papers (2024-04-22T21:58:23Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
In robotics applications, smooth control signals are commonly preferred to reduce system wear and energy efficiency.
In this work, we aim to bridge this performance gap by growing discrete action spaces from coarse to fine control resolution.
Our work indicates that an adaptive control resolution in combination with value decomposition yields simple critic-only algorithms that yield surprisingly strong performance on continuous control tasks.
arXiv Detail & Related papers (2024-04-05T17:58:37Z) - Multi-level Optimal Control with Neural Surrogate Models [0.7646713951724013]
The evaluation of the optimal closed loop for a given actuator realisation is a computationally demanding task.
The use of neural network surrogates to replace the lower level of the optimisation hierarchy is proposed.
The effectiveness of the proposed surrogate models and optimisation methods is assessed in a test related to optimal actuator location for heat control.
arXiv Detail & Related papers (2024-02-12T16:28:57Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Introduction to Online Nonstochastic Control [34.77535508151501]
In online nonstochastic control, both the cost functions as well as the perturbations from the assumed dynamical model are chosen by an adversary.
The target is to attain low regret against the best policy in hindsight from a benchmark class of policies.
arXiv Detail & Related papers (2022-11-17T16:12:45Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
We propose a new deep learning framework for the low-light image enhancement (LIE) problem.
The proposed framework contains a decomposition network inspired by algorithm unrolling, and adjustment networks considering both global brightness and local brightness sensitivity.
Experiments on a series of typical LIE datasets demonstrated the effectiveness of the proposed method, both quantitatively and visually, as compared with existing methods.
arXiv Detail & Related papers (2022-02-12T03:59:38Z) - Learning Stochastic Optimal Policies via Gradient Descent [17.9807134122734]
We systematically develop a learning-based treatment of optimal control (SOC)
We propose a derivation of adjoint sensitivity results for differential equations through direct application of variational calculus.
We verify the performance of the proposed approach on a continuous-time, finite horizon portfolio optimization with proportional transaction costs.
arXiv Detail & Related papers (2021-06-07T16:43:07Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.