Adaptive Bayesian Optimization for High-Precision Motion Systems
- URL: http://arxiv.org/abs/2404.14602v1
- Date: Mon, 22 Apr 2024 21:58:23 GMT
- Title: Adaptive Bayesian Optimization for High-Precision Motion Systems
- Authors: Christopher König, Raamadaas Krishnadas, Efe C. Balta, Alisa Rupenyan,
- Abstract summary: We propose a real-time purely data-driven, model-free approach for adaptive control, by online tuning low-level controller parameters.
We base our algorithm on GoOSE, an algorithm for safe and sample-efficient Bayesian optimization.
We evaluate the algorithm's performance on a real precision-motion system utilized in semiconductor industry applications.
- Score: 2.073673208115137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controller tuning and parameter optimization are crucial in system design to improve closed-loop system performance. Bayesian optimization has been established as an efficient model-free controller tuning and adaptation method. However, Bayesian optimization methods are computationally expensive and therefore difficult to use in real-time critical scenarios. In this work, we propose a real-time purely data-driven, model-free approach for adaptive control, by online tuning low-level controller parameters. We base our algorithm on GoOSE, an algorithm for safe and sample-efficient Bayesian optimization, for handling performance and stability criteria. We introduce multiple computational and algorithmic modifications for computational efficiency and parallelization of optimization steps. We further evaluate the algorithm's performance on a real precision-motion system utilized in semiconductor industry applications by modifying the payload and reference stepsize and comparing it to an interpolated constrained optimization-based baseline approach.
Related papers
- Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Towards Safe Multi-Task Bayesian Optimization [1.3654846342364308]
Reduced physical models of the system can be incorporated into the optimization process, accelerating it.
These models are able to offer an approximation of the actual system, and evaluating them is significantly cheaper.
Safety is a crucial criterion for online optimization methods such as Bayesian optimization.
arXiv Detail & Related papers (2023-12-12T13:59:26Z) - Adaptive Optimizer for Automated Hyperparameter Optimization Problem [0.0]
In this paper, we present a general framework that is able to construct an adaptive framework, which automatically adjust the appropriate parameters in the process of optimization.
arXiv Detail & Related papers (2022-01-28T13:58:10Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
We propose an efficient parallelizable Bayesian optimization algorithm via Multi-objective ACquisition function Ensemble (MACE)
Our proposed algorithm can reduce the overall simulation time by up to 74 times compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15.
For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to 15 times compared to the weighted expected improvement based Bayesian optimization (WEIBO) approach, when the batch size is 15.
arXiv Detail & Related papers (2021-06-28T13:21:28Z) - Safe and Efficient Model-free Adaptive Control via Bayesian Optimization [39.962395119933596]
We propose a purely data-driven, model-free approach for adaptive control.
tuning low-level controllers based solely on system data raises concerns on the underlying algorithm safety and computational performance.
We numerically demonstrate for several types of disturbances that our approach is sample efficient, outperforms constrained Bayesian optimization in terms of safety, and achieves the performance optima computed by grid evaluation.
arXiv Detail & Related papers (2021-01-19T19:15:00Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z) - Bayesian Optimization for Policy Search in High-Dimensional Systems via
Automatic Domain Selection [1.1240669509034296]
We propose to leverage results from optimal control to scale BO to higher dimensional control tasks.
We show how we can make use of a learned dynamics model in combination with a model-based controller to simplify the BO problem.
We present an experimental evaluation on real hardware, as well as simulated tasks including a 48-dimensional policy for a quadcopter.
arXiv Detail & Related papers (2020-01-21T09:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.