Improving non-deterministic uncertainty modelling in Industry 4.0
scheduling
- URL: http://arxiv.org/abs/2101.05677v1
- Date: Fri, 8 Jan 2021 23:17:55 GMT
- Title: Improving non-deterministic uncertainty modelling in Industry 4.0
scheduling
- Authors: Ashwin Misra, Ankit Mittal, Vihaan Misra and Deepanshu Pandey
- Abstract summary: This paper presents a comprehensive method to quantify the non-deterministic uncertainty through probabilistic uncertainty modelling.
The results are numerically validated through an Industrial data set in Flanders, Belgium.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The latest Industrial revolution has helped industries in achieving very high
rates of productivity and efficiency. It has introduced data aggregation and
cyber-physical systems to optimize planning and scheduling. Although,
uncertainty in the environment and the imprecise nature of human operators are
not accurately considered for into the decision making process. This leads to
delays in consignments and imprecise budget estimations. This widespread
practice in the industrial models is flawed and requires rectification. Various
other articles have approached to solve this problem through stochastic or
fuzzy set model methods. This paper presents a comprehensive method to
logically and realistically quantify the non-deterministic uncertainty through
probabilistic uncertainty modelling. This method is applicable on virtually all
Industrial data sets, as the model is self adjusting and uses
epsilon-contamination to cater to limited or incomplete data sets. The results
are numerically validated through an Industrial data set in Flanders, Belgium.
The data driven results achieved through this robust scheduling method
illustrate the improvement in performance.
Related papers
- Uncertainty for Active Learning on Graphs [70.44714133412592]
Uncertainty Sampling is an Active Learning strategy that aims to improve the data efficiency of machine learning models.
We benchmark Uncertainty Sampling beyond predictive uncertainty and highlight a significant performance gap to other Active Learning strategies.
We develop ground-truth Bayesian uncertainty estimates in terms of the data generating process and prove their effectiveness in guiding Uncertainty Sampling toward optimal queries.
arXiv Detail & Related papers (2024-05-02T16:50:47Z) - Accelerating Generalized Linear Models by Trading off Computation for
Uncertainty [29.877181350448193]
Generalized Linear Models (GLMs) define a flexible probabilistic framework to model categorical, ordinal and continuous data.
The resulting approximation error adversely impacts the reliability of the model and is not accounted for in the uncertainty of the prediction.
We introduce a family of iterative methods that explicitly model this error.
arXiv Detail & Related papers (2023-10-31T08:58:16Z) - Towards Continually Learning Application Performance Models [1.2278517240988065]
Machine learning-based performance models are increasingly being used to build critical job scheduling and application optimization decisions.
Traditionally, these models assume that data distribution does not change as more samples are collected over time.
We develop continually learning performance models that account for the distribution drift, alleviate catastrophic forgetting, and improve generalizability.
arXiv Detail & Related papers (2023-10-25T20:48:46Z) - ALUM: Adversarial Data Uncertainty Modeling from Latent Model
Uncertainty Compensation [25.67258563807856]
We propose a novel method called ALUM to handle the model uncertainty and data uncertainty in a unified scheme.
Our proposed ALUM is model-agnostic which can be easily implemented into any existing deep model with little extra overhead.
arXiv Detail & Related papers (2023-03-29T17:24:12Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Data-Driven Offline Decision-Making via Invariant Representation
Learning [97.49309949598505]
offline data-driven decision-making involves synthesizing optimized decisions with no active interaction.
A key challenge is distributional shift: when we optimize with respect to the input into a model trained from offline data, it is easy to produce an out-of-distribution (OOD) input that appears erroneously good.
In this paper, we formulate offline data-driven decision-making as domain adaptation, where the goal is to make accurate predictions for the value of optimized decisions.
arXiv Detail & Related papers (2022-11-21T11:01:37Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
We propose a data preprocessing technique that can detect instances ascribing a specific kind of bias that should be removed from the dataset before training.
In particular, we claim that in the problem settings where instances exist with similar feature but different labels caused by variation in protected attributes, an inherent bias gets induced in the dataset.
arXiv Detail & Related papers (2022-10-24T13:04:07Z) - Leveraging Industry 4.0 -- Deep Learning, Surrogate Model and Transfer
Learning with Uncertainty Quantification Incorporated into Digital Twin for
Nuclear System [2.530807828621263]
The emergence of Internet of Things (IoT) and Machine Learning (ML) has made the concept of surrogate modeling even more viable.
This chapter begins with a brief overview of the concept of surrogate modeling, transfer learning, IoT and digital twins.
After that, a detailed overview of uncertainties, uncertainty quantification frameworks, and specifics of uncertainty quantification methodologies for a surrogate model linked to a digital twin is presented.
arXiv Detail & Related papers (2022-09-30T20:19:04Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.