論文の概要: Quantum annealing initialization of the quantum approximate optimization
algorithm
- arxiv url: http://arxiv.org/abs/2101.05742v3
- Date: Tue, 29 Jun 2021 12:35:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-15 05:05:39.759750
- Title: Quantum annealing initialization of the quantum approximate optimization
algorithm
- Title(参考訳): 量子近似最適化アルゴリズムの量子アニール初期化
- Authors: Stefan H. Sack and Maksym Serbyn
- Abstract要約: 量子近似最適化アルゴリズム(QAOA)は、近い将来の量子アルゴリズムである。
QAOAで必要とされる外部パラメータの最適化は、パフォーマンスのボトルネックになる可能性がある。
本研究では、ランダムグラフ上のMaxCut問題に適用されたQAOAの最適化景観を可視化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum approximate optimization algorithm (QAOA) is a prospective
near-term quantum algorithm due to its modest circuit depth and promising
benchmarks. However, an external parameter optimization required in QAOA could
become a performance bottleneck. This motivates studies of the optimization
landscape and search for heuristic ways of parameter initialization. In this
work we visualize the optimization landscape of the QAOA applied to the MaxCut
problem on random graphs, demonstrating that random initialization of the QAOA
is prone to converging to local minima with sub-optimal performance. We
introduce the initialization of QAOA parameters based on the Trotterized
quantum annealing (TQA) protocol, parameterized by the Trotter time step. We
find that the TQA initialization allows to circumvent the issue of false minima
for a broad range of time steps, yielding the same performance as the best
result out of an exponentially scaling number of random initializations.
Moreover, we demonstrate that the optimal value of the time step coincides with
the point of proliferation of Trotter errors in quantum annealing. Our results
suggest practical ways of initializing QAOA protocols on near-term quantum
devices and reveals new connections between QAOA and quantum annealing.
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)は、その控えめな回路深さと有望なベンチマークのため、近い将来の量子アルゴリズムである。
しかし、QAOAで必要とされる外部パラメータの最適化はパフォーマンスのボトルネックになる可能性がある。
これは最適化のランドスケープの研究とパラメータ初期化のヒューリスティックな方法の探索を動機付ける。
本研究では,ランダムグラフ上のmaxcut問題に適用するqaoaの最適化景観を可視化し,qaoaのランダム初期化が局所的ミニマに局所最適性能を収束させる傾向を示す。
本稿では、Trotterized quantum annealing(TQA)プロトコルに基づくQAOAパラメータの初期化について紹介する。
我々は,TQA初期化により,広範囲の時間ステップにおいて偽ミニマ問題を回避することができ,指数関数的にスケールするランダム初期化数から得られる最良の結果と同じ性能が得られることを示した。
さらに, 時間ステップの最適値は, 量子アニーリングにおけるトロッター誤差の拡散点と一致することを示した。
本研究は,QAOAプロトコルを短期量子デバイス上で初期化する方法を提案し,QAOAと量子アニールの新たな接続を明らかにする。
関連論文リスト
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
近年,変分量子回路の最適化のためのQNGアルゴリズムが提案されている。
本研究では、この離散時間解が一般化形式を与えることを示すために、QNG力を持つランゲヴィン方程式を用いる。
論文 参考訳(メタデータ) (2024-09-03T15:21:16Z) - Parameter Setting Heuristics Make the Quantum Approximate Optimization Algorithm Suitable for the Early Fault-Tolerant Era [3.734751161717204]
量子近似最適化アルゴリズム(QAOA)は、最も有望な量子最適化の1つである。
QAOAにおけるパラメータ設定の最近の進歩は、QAOAを用いたFTQC実験を現実的に実現している。
論文 参考訳(メタデータ) (2024-08-18T16:48:14Z) - Proactively incremental-learning QAOA [9.677961025372115]
逐次学習に基づく量子近似最適化アルゴリズム(QAOA)を提案する。
本手法は, 近似比(AR)とトレーニング時間において, 一般的なQAOAよりも優れた性能を有する。
論文 参考訳(メタデータ) (2023-11-04T02:15:26Z) - Iterative-Free Quantum Approximate Optimization Algorithm Using Neural
Networks [20.051757447006043]
そこで本稿では,ニューラルネットワークを用いて与えられた問題に対して,より優れたパラメータを求めるための実践的手法を提案する。
我々の手法は一貫して収束し、最終結果も最高速である。
論文 参考訳(メタデータ) (2022-08-21T14:05:11Z) - LAWS: Look Around and Warm-Start Natural Gradient Descent for Quantum
Neural Networks [11.844238544360149]
Vari Quantum Algorithm (VQA) は、ノイズ中間スケール量子コンピュータ (NISQ) における有望な性能のために最近注目されている。
パラメータ化量子回路(PQC)上でランダムなパラメータを持つVQAは、勾配が量子ビット数で指数関数的に消えるバレンプラトー(BP)によって特徴づけられる。
本稿では、古典的な1次最適化点から、VQAでよく使われるアルゴリズムの1つである量子自然勾配(QNG)について述べる。
そして、私たちはアンダーラインAroundアンダーラインを提案しました。
論文 参考訳(メタデータ) (2022-05-05T14:16:40Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
任意サイズのパラメタライズド量子回路のためのFLexible Initializerを提案する。
FLIPは任意の種類のPQCに適用することができ、初期パラメータの一般的なセットに頼る代わりに、成功したパラメータの構造を学ぶように調整されている。
本稿では, 3つのシナリオにおいてFLIPを用いることの利点を述べる。不毛な高原における問題ファミリ, 最大カット問題インスタンスを解くPQCトレーニング, 1次元フェルミ-ハッバードモデルの基底状態エネルギーを求めるPQCトレーニングである。
論文 参考訳(メタデータ) (2021-03-15T17:38:33Z) - Bridging Classical and Quantum with SDP initialized warm-starts for QAOA [4.76507354067301]
本稿では,QAOAをグラフ内のすべての可能なカットの偏重重ね合わせで初期化する,古典的な前処理ステップを紹介する。
我々は、QAOA-Warmと呼ばれるこのQAOAの変種が、トレーニング時間が少なく、低い回路深度で標準QAOAより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-27T02:57:22Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。