Quantum computing with superconducting circuits in the picosecond regime
- URL: http://arxiv.org/abs/2101.05810v2
- Date: Mon, 19 Jul 2021 13:36:39 GMT
- Title: Quantum computing with superconducting circuits in the picosecond regime
- Authors: Daoquan Zhu, Tuomas Jaako, Qiongyi He, Peter Rabl
- Abstract summary: We show that for highly anharmonic flux qubits and commercially available control electronics, single- and two-qubit operations can be implemented in about 100 picoseconds.
Compared to state-of-the-art implementations with transmon qubits, a hundredfold increase in the speed of gate operations with superconducting circuits is still feasible.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss the realization of a universal set of ultrafast single- and
two-qubit operations with superconducting quantum circuits and investigate the
most relevant physical and technical limitations that arise when pushing for
faster and faster gates. With the help of numerical optimization techniques, we
establish a fundamental bound on the minimal gate time, which is determined
independently of the qubit design solely by its nonlinearity. In addition,
important practical restrictions arise from the finite qubit transition
frequency and the limited bandwidth of the control pulses. We show that for
highly anharmonic flux qubits and commercially available control electronics,
elementary single- and two-qubit operations can be implemented in about 100
picoseconds with residual gate errors below $10^{-4}$. Under the same
conditions, we simulate the complete execution of a compressed version of
Shor's algorithm for factoring the number 15 in about one nanosecond. These
results demonstrate that compared to state-of-the-art implementations with
transmon qubits, a hundredfold increase in the speed of gate operations with
superconducting circuits is still feasible.
Related papers
- Designing Fast Quantum Gates with Tunable Couplers: A Reinforcement
Learning Approach [0.0]
We propose and illustrate the usefulness of reinforcement learning to generate fast two-qubit gates in superconducting qubits.
We show that the RL controller offers great effectiveness in finding piecewise constant gate pulse sequences autonomously.
Such gate pulse sequences exploit the leakage space judiciously by controlling the leakage dynamics into and out of the computational subspace.
arXiv Detail & Related papers (2023-12-26T23:52:57Z) - Speed limits of two-qubit gates with qudits [0.5852077003870417]
We find an optimal theoretical bound for the speed limit of a two-qubit gate achieved using two qudits with a bounded interaction strength and arbitrarily fast single-qudit gates.
We develop an open-source, machine learning assisted, quantum optimal control algorithm that can achieve a speedup close to the theoretical limit with near-perfect gate fidelity.
arXiv Detail & Related papers (2023-12-14T18:49:11Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Overcoming I/O bottleneck in superconducting quantum computing:
multiplexed qubit control with ultra-low-power, base-temperature cryo-CMOS
multiplexer [40.37334699475035]
Large-scale superconducting quantum computing systems entail high-fidelity control and readout of qubits at millikelvin temperatures.
Cryo-electronics may offer a scalable and versatile solution to overcome this bottleneck.
Here we present an ultra-low power radio-frequency (RF) multiplexing cryo-electronics solution operating below 15 mK.
arXiv Detail & Related papers (2022-09-26T22:38:09Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Implementing two-qubit gates at the quantum speed limit [33.51056531486263]
We experimentally demonstrate commonly used two-qubit gates at nearly the fastest possible speed.
We achieve this quantum speed limit by implementing experimental gates designed using a machine learning inspired optimal control method.
We expect our method to offer significant speedups for non-native two-qubit gates.
arXiv Detail & Related papers (2022-06-15T18:00:00Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.