Hybrid Approaches for Moral Value Alignment in AI Agents: a Manifesto
- URL: http://arxiv.org/abs/2312.01818v3
- Date: Thu, 16 Jan 2025 15:58:24 GMT
- Title: Hybrid Approaches for Moral Value Alignment in AI Agents: a Manifesto
- Authors: Elizaveta Tennant, Stephen Hailes, Mirco Musolesi,
- Abstract summary: Increasing interest in ensuring the safety of next-generation Artificial Intelligence (AI) systems calls for novel approaches to embedding morality into autonomous agents.
We provide a systematization of existing approaches to the problem of introducing morality in machines - modelled as a continuum.
We argue that more hybrid solutions are needed to create adaptable and robust, yet controllable and interpretable agentic systems.
- Score: 3.7414804164475983
- License:
- Abstract: Increasing interest in ensuring the safety of next-generation Artificial Intelligence (AI) systems calls for novel approaches to embedding morality into autonomous agents. This goal differs qualitatively from traditional task-specific AI methodologies. In this paper, we provide a systematization of existing approaches to the problem of introducing morality in machines - modelled as a continuum. Our analysis suggests that popular techniques lie at the extremes of this continuum - either being fully hard-coded into top-down, explicit rules, or entirely learned in a bottom-up, implicit fashion with no direct statement of any moral principle (this includes learning from human feedback, as applied to the training and finetuning of large language models, or LLMs). Given the relative strengths and weaknesses of each type of methodology, we argue that more hybrid solutions are needed to create adaptable and robust, yet controllable and interpretable agentic systems. To that end, this paper discusses both the ethical foundations (including deontology, consequentialism and virtue ethics) and implementations of morally aligned AI systems. We present a series of case studies that rely on intrinsic rewards, moral constraints or textual instructions, applied to either pure-Reinforcement Learning or LLM-based agents. By analysing these diverse implementations under one framework, we compare their relative strengths and shortcomings in developing morally aligned AI systems. We then discuss strategies for evaluating the effectiveness of moral learning agents. Finally, we present open research questions and implications for the future of AI safety and ethics which are emerging from this hybrid framework.
Related papers
- Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.
I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems [0.0]
There still exists a gap between principles and practices in AI ethics.
One major obstacle organisations face when attempting to operationalise AI Ethics is the lack of a well-defined material scope.
arXiv Detail & Related papers (2024-07-07T12:16:01Z) - Dynamic Normativity: Necessary and Sufficient Conditions for Value Alignment [0.0]
We find "alignment" a problem related to the challenges of expressing human goals and values in a manner that artificial systems can follow without leading to unwanted adversarial effects.
This work addresses alignment as a technical-philosophical problem that requires solid philosophical foundations and practical implementations that bring normative theory to AI system development.
arXiv Detail & Related papers (2024-06-16T18:37:31Z) - Unpacking the Ethical Value Alignment in Big Models [46.560886177083084]
This paper provides an overview of the risks and challenges associated with big models, surveys existing AI ethics guidelines, and examines the ethical implications arising from the limitations of these models.
We introduce a novel conceptual paradigm for aligning the ethical values of big models and discuss promising research directions for alignment criteria, evaluation, and method.
arXiv Detail & Related papers (2023-10-26T16:45:40Z) - Beneficent Intelligence: A Capability Approach to Modeling Benefit,
Assistance, and Associated Moral Failures through AI Systems [12.239090962956043]
The prevailing discourse around AI ethics lacks the language and formalism necessary to capture the diverse ethical concerns that emerge when AI systems interact with individuals.
We present a framework formalizing a network of ethical concepts and entitlements necessary for AI systems to confer meaningful benefit or assistance to stakeholders.
arXiv Detail & Related papers (2023-08-01T22:38:14Z) - Modeling Moral Choices in Social Dilemmas with Multi-Agent Reinforcement
Learning [4.2050490361120465]
A bottom-up learning approach may be more appropriate for studying and developing ethical behavior in AI agents.
We present a systematic analysis of the choices made by intrinsically-motivated RL agents whose rewards are based on moral theories.
We analyze the impact of different types of morality on the emergence of cooperation, defection or exploitation.
arXiv Detail & Related papers (2023-01-20T09:36:42Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.