論文の概要: Intact-VAE: Estimating Treatment Effects under Unobserved Confounding
- arxiv url: http://arxiv.org/abs/2101.06662v2
- Date: Wed, 17 Feb 2021 01:12:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 20:19:59.972918
- Title: Intact-VAE: Estimating Treatment Effects under Unobserved Confounding
- Title(参考訳): Intact-VAE:未観察埋没時の治療効果の推定
- Authors: Pengzhou Wu and Kenji Fukumizu
- Abstract要約: Intact-VAEは、治療効果の特定に十分である予後スコアに動機づけられた新しいバリエーションの可変オートエンコーダ(VAE)である。
理論的には,ある条件下では治療効果をモデルによって同定し,さらに,モデルの識別性に基づいて,vaeは治療群に対してバランスの取れた一貫した推定器であることを示した。
- 参考スコア(独自算出の注目度): 21.33872753593482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an important problem of causal inference, we discuss the identification
and estimation of treatment effects under unobserved confounding. Representing
the confounder as a latent variable, we propose Intact-VAE, a new variant of
variational autoencoder (VAE), motivated by the prognostic score that is
sufficient for identifying treatment effects. We theoretically show that, under
certain settings, treatment effects are identified by our model, and further,
based on the identifiability of our model (i.e., determinacy of
representation), our VAE is a consistent estimator with representation balanced
for treatment groups. Experiments on (semi-)synthetic datasets show
state-of-the-art performance under diverse settings.
- Abstract(参考訳): 因果推論の重要な問題として,治療効果の同定と推定について検討した。
共同創設者を潜在変数として表現し,治療効果の同定に十分な予後スコアに動機づけられた変異型オートエンコーダ(vae)の新たな変種であるalt-vaeを提案する。
理論的には、ある条件下では、治療効果はモデルによって同定され、さらに、我々のモデル(表現の決定性)の識別性に基づいて、我々のvaeは治療群に対してバランスの取れた一貫した推定子であることが示されている。
半)合成データセットの実験は、様々な設定で最先端のパフォーマンスを示す。
関連論文リスト
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - Causal Effect Estimation using identifiable Variational AutoEncoder with Latent Confounders and Post-Treatment Variables [18.34462010115951]
観測データから因果効果を推定することは、特に潜伏した共同創設者の存在下では困難である。
本稿では,潜在共同創設者と潜在後処理変数の表現を学習するための,新しい変分オートエンコーダ(VAE)と識別可能な変分オートエンコーダ(iVAE)を提案する。
論文 参考訳(メタデータ) (2024-08-13T22:13:25Z) - Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments [67.80453452949303]
観察データから条件平均治療効果(CATE)を推定することは、パーソナライズされた医療など多くの応用に関係している。
ここでは、観測データが複数の環境からやってくる広範囲な環境に焦点を当てる。
任意の機械学習モデルと組み合わせて使用可能な境界を推定するために、異なるモデルに依存しない学習者(いわゆるメタ学習者)を提案する。
論文 参考訳(メタデータ) (2024-06-04T16:31:43Z) - Causal Dynamic Variational Autoencoder for Counterfactual Regression in
Longitudinal Data [3.662229789022107]
時間とともに治療効果を推定することは、精密医療、疫学、経済、マーケティングなど多くの現実世界の応用において重要である。
我々は、観測されていないリスク要因、すなわち、結果の順序だけに影響を与える調整変数を仮定することで、異なる視点を取る。
我々は、時間変化効果と未観測の調整変数によって生じる課題に対処する。
論文 参考訳(メタデータ) (2023-10-16T16:32:35Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - \beta-Intact-VAE: Identifying and Estimating Causal Effects under
Limited Overlap [21.33872753593482]
生体統計学において広く用いられ,治療効果に十分である予後スコアをモデル化するために潜伏変数を用いる。
本研究では,潜伏変数が予後スコアを回復し,個々の治療効果を同定する。
個別化特徴量で条件付き処理グループにバランスのとれた表現を可能にするTEエラー境界を導出する。
論文 参考訳(メタデータ) (2021-10-11T12:43:29Z) - Towards Principled Causal Effect Estimation by Deep Identifiable Models [21.33872753593482]
本研究では, 未観測条件下での処理効果 (TE) の推定について検討する。
本稿では,変分オートエンコーダ(VAE)の新たな変種であるIntact-VAEを提案する。
論文 参考訳(メタデータ) (2021-09-30T12:19:45Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
観察データから治療効果を推定する際の根本的な問題は、共同設立者の識別とバランスである。
これまでの方法の多くは、観察されたすべての事前処理変数を共同創設者として扱い、共同創設者と非共同創設者の識別をさらに無視することで、共同ファウンダーのバランスを実現していた。
本研究では,1)共同創設者と非共同創設者の両方の表現を学習することで共同創設者を同定し,2)再重み付け手法のバランスをとるとともに,同時に,反実的推論による観察研究における治療効果を推定する相乗的学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-12T09:50:42Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。