論文の概要: Causal Effect Estimation using identifiable Variational AutoEncoder with Latent Confounders and Post-Treatment Variables
- arxiv url: http://arxiv.org/abs/2408.07219v1
- Date: Tue, 13 Aug 2024 22:13:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:35:46.763184
- Title: Causal Effect Estimation using identifiable Variational AutoEncoder with Latent Confounders and Post-Treatment Variables
- Title(参考訳): 変分自動エンコーダと遅延共生者および後処理変数を用いた因果効果推定
- Authors: Yang Xie, Ziqi Xu, Debo Cheng, Jiuyong Li, Lin Liu, Yinghao Zhang, Zaiwen Feng,
- Abstract要約: 観測データから因果効果を推定することは、特に潜伏した共同創設者の存在下では困難である。
本稿では,潜在共同創設者と潜在後処理変数の表現を学習するための,新しい変分オートエンコーダ(VAE)と識別可能な変分オートエンコーダ(iVAE)を提案する。
- 参考スコア(独自算出の注目度): 18.34462010115951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating causal effects from observational data is challenging, especially in the presence of latent confounders. Much work has been done on addressing this challenge, but most of the existing research ignores the bias introduced by the post-treatment variables. In this paper, we propose a novel method of joint Variational AutoEncoder (VAE) and identifiable Variational AutoEncoder (iVAE) for learning the representations of latent confounders and latent post-treatment variables from their proxy variables, termed CPTiVAE, to achieve unbiased causal effect estimation from observational data. We further prove the identifiability in terms of the representation of latent post-treatment variables. Extensive experiments on synthetic and semi-synthetic datasets demonstrate that the CPTiVAE outperforms the state-of-the-art methods in the presence of latent confounders and post-treatment variables. We further apply CPTiVAE to a real-world dataset to show its potential application.
- Abstract(参考訳): 観測データから因果効果を推定することは、特に潜伏した共同創設者の存在下では困難である。
この問題に対処する作業は数多く行われているが、既存の研究のほとんどは、後処理変数がもたらすバイアスを無視している。
本稿では,代用変数であるCPTiVAEから潜在共同設立者および潜在後処理変数の表現を学習し,観測データから不偏因因果効果を推定するための,共用変分自動エンコーダ(VAE)と同定可能な変分自動エンコーダ(iVAE)の新たな手法を提案する。
さらに、潜伏後処理変数の表現の観点から、その識別可能性を証明する。
合成および半合成データセットに関する大規模な実験は、CPTiVAEが潜在共同設立者や後処理変数の存在下で最先端の手法より優れていることを示した。
さらに,CPTiVAEを実世界のデータセットに適用し,その可能性を示す。
関連論文リスト
- Estimating Individual Dose-Response Curves under Unobserved Confounders from Observational Data [6.166869525631879]
本稿では,連続治療の因果効果を推定するための新しいフレームワークであるContiVAEについて述べる。
ContiVAEは既存の手法を最大62%上回り、その堅牢性と柔軟性を示す。
論文 参考訳(メタデータ) (2024-10-21T07:24:26Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAEは,ポイントマスク自動エンコーダのグローバルな特徴表現を強化する,自己教師型学習フレームワークである。
PseudoNeg-MAE は ModelNet40 と ScanObjectNN のデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-24T07:57:21Z) - Causal Dynamic Variational Autoencoder for Counterfactual Regression in
Longitudinal Data [3.662229789022107]
時間とともに治療効果を推定することは、精密医療、疫学、経済、マーケティングなど多くの現実世界の応用において重要である。
我々は、観測されていないリスク要因、すなわち、結果の順序だけに影響を与える調整変数を仮定することで、異なる視点を取る。
我々は、時間変化効果と未観測の調整変数によって生じる課題に対処する。
論文 参考訳(メタデータ) (2023-10-16T16:32:35Z) - Causal Effect Estimation with Variational AutoEncoder and the Front Door
Criterion [23.20371860838245]
フロントドア基準は、データからフロントドア調整に使用される変数の集合を特定することがしばしば困難である。
表現学習における深層生成モデルの能力を活用して、変分オートエンコーダを用いたフロントドア調整セットの表現を学習するためのFDVAEを提案する。
論文 参考訳(メタデータ) (2023-04-24T10:04:28Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Variational Temporal Deconfounder for Individualized Treatment Effect
Estimation from Longitudinal Observational Data [8.347630187110004]
経年的観察データから治療効果を推定するための既存のアプローチは、通常「不整合性」という強い仮定に基づいて構築される。
本稿では, プロキシを用いた縦方向設定における深部変分埋め込みを応用した変分時間デコノミー(VTD)を提案する。
我々は,本手法を人工的および実世界の臨床データの両方で検証し,本手法が他の既存モデルと比較して有意な偏りを隠蔽する場合に有効であることを示した。
論文 参考訳(メタデータ) (2022-07-23T16:43:12Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Identifiable Energy-based Representations: An Application to Estimating
Heterogeneous Causal Effects [83.66276516095665]
条件付き平均治療効果(CATEs)は、多数の個体にまたがる不均一性について理解することができる。
典型的なCATE学習者は、CATEが識別可能であるために、すべての共起変数が測定されていると仮定する。
本稿では,ノイズコントラッシブ損失関数を用いて,変数の低次元表現を学習するエネルギーベースモデルを提案する。
論文 参考訳(メタデータ) (2021-08-06T10:39:49Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Intact-VAE: Estimating Treatment Effects under Unobserved Confounding [21.33872753593482]
Intact-VAEは、治療効果の特定に十分である予後スコアに動機づけられた新しいバリエーションの可変オートエンコーダ(VAE)である。
理論的には,ある条件下では治療効果をモデルによって同定し,さらに,モデルの識別性に基づいて,vaeは治療群に対してバランスの取れた一貫した推定器であることを示した。
論文 参考訳(メタデータ) (2021-01-17T13:03:44Z) - Learning Disentangled Representations with Latent Variation
Predictability [102.4163768995288]
本稿では,潜在不整合表現の変動予測可能性について述べる。
逆生成プロセス内では、潜時変動と対応する画像対の相互情報を最大化することにより、変動予測可能性を高める。
本研究では,潜在表現の絡み合いを測るために,基礎的構造的生成因子に依存しない評価指標を開発する。
論文 参考訳(メタデータ) (2020-07-25T08:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。