論文の概要: A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence
- arxiv url: http://arxiv.org/abs/2101.06761v2
- Date: Thu, 25 Feb 2021 06:39:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-27 20:13:47.363074
- Title: A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence
- Title(参考訳): 脅威知能を用いたコンピュータシステムにおけるサイバー脅威の効率的なハンティングシステム
- Authors: Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Haoyuan Liu, Zheng
Qin, Fengyuan Xu, Prateek Mittal, Sanjeev R. Kulkarni, Dawn Song
- Abstract要約: ThreatRaptorは、OSCTIを使用してコンピュータシステムにおけるサイバー脅威ハンティングを容易にするシステムです。
ThreatRaptorは、(1)構造化OSCTIテキストから構造化された脅威行動を抽出する非監視で軽量で正確なNLPパイプライン、(2)簡潔で表現力のあるドメイン固有クエリ言語であるTBQLを提供し、悪意のあるシステムアクティビティを探し、(3)抽出された脅威行動からTBQLクエリを自動的に合成するクエリ合成メカニズムを提供する。
- 参考スコア(独自算出の注目度): 78.23170229258162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Log-based cyber threat hunting has emerged as an important solution to
counter sophisticated cyber attacks. However, existing approaches require
non-trivial efforts of manual query construction and have overlooked the rich
external knowledge about threat behaviors provided by open-source Cyber Threat
Intelligence (OSCTI). To bridge the gap, we build ThreatRaptor, a system that
facilitates cyber threat hunting in computer systems using OSCTI. Built upon
mature system auditing frameworks, ThreatRaptor provides (1) an unsupervised,
light-weight, and accurate NLP pipeline that extracts structured threat
behaviors from unstructured OSCTI text, (2) a concise and expressive
domain-specific query language, TBQL, to hunt for malicious system activities,
(3) a query synthesis mechanism that automatically synthesizes a TBQL query
from the extracted threat behaviors, and (4) an efficient query execution
engine to search the big system audit logging data.
- Abstract(参考訳): ログベースのサイバー脅威狩りは、高度なサイバー攻撃に対抗する重要な解決策として浮上している。
しかし、既存のアプローチでは、手作業によるクエリ構築が必須ではなく、オープンソースのCyber Threat Intelligence(OSCTI)が提供する脅威行動に関する豊富な外部知識を見落としている。
このギャップを埋めるために、OSCTIを用いたコンピュータシステムにおけるサイバー脅威ハンティングを支援するThreatRaptorを開発した。
Built upon mature system auditing frameworks, ThreatRaptor provides (1) an unsupervised, light-weight, and accurate NLP pipeline that extracts structured threat behaviors from unstructured OSCTI text, (2) a concise and expressive domain-specific query language, TBQL, to hunt for malicious system activities, (3) a query synthesis mechanism that automatically synthesizes a TBQL query from the extracted threat behaviors, and (4) an efficient query execution engine to search the big system audit logging data.
関連論文リスト
- IRSKG: Unified Intrusion Response System Knowledge Graph Ontology for Cyber Defense [2.17870369215002]
侵入応答システム(IRS)は、検出後の脅威を軽減するために重要である。
IRSはいくつかの戦術、技術、手順(TTP)を使用して攻撃を軽減し、インフラを通常の運用に復元する。
我々は,新たなエンタープライズシステムの導入を合理化するIRS知識グラフオントロジー(IRSKG)を提案する。
論文 参考訳(メタデータ) (2024-11-23T23:31:55Z) - Cyber Sentinel: Exploring Conversational Agents in Streamlining Security Tasks with GPT-4 [0.08192907805418582]
本稿では,タスク指向型サイバーセキュリティ対話システムであるCyber Sentinelを紹介する。
人工知能、サイバーセキュリティ分野の専門知識、リアルタイムデータ分析の融合を具体化し、サイバー敵による多面的課題に対処する。
我々の研究はタスク指向対話システムに対する新しいアプローチであり、即時工学と組み合わせたGPT-4モデルの連鎖の力を活用している。
論文 参考訳(メタデータ) (2023-09-28T13:18:33Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
我々は、敵の目標、知識、攻撃ベクトルに応じて、KGRに対するセキュリティ脅威を体系化する。
我々は、このような脅威をインスタンス化する新しいタイプの攻撃であるROARを提示する。
ROARに対する潜在的な対策として,潜在的に有毒な知識のフィルタリングや,対向的な拡張クエリによるトレーニングについて検討する。
論文 参考訳(メタデータ) (2023-05-03T18:47:42Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
論文 参考訳(メタデータ) (2022-12-20T16:13:59Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Automating Cyber Threat Hunting Using NLP, Automated Query Generation,
and Genetic Perturbation [8.669461942767098]
We have developed the WILEE system that cyber threat hunting by translating high-level threat descriptions into many possible concrete implementation。
高レベル)抽象的および(低レベル)具体的な実装は、カスタムドメイン固有の言語を使用して表現される。
WILEEは、DSLで書かれた他のロジックと共に実装を使用して、クエリを自動的に生成し、潜在的な敵に結びついた仮説を確認(または否定)する。
論文 参考訳(メタデータ) (2021-04-23T13:19:12Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKGはOSCTIの収集と管理を自動化するシステムである。
AIとNLP技術を組み合わせて、脅威行動に関する高忠実な知識を抽出する。
論文 参考訳(メタデータ) (2021-01-19T18:31:35Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptorは、オープンソースのCyber Threat Intelligence(OSCTI)を使用して、コンピュータシステムにおける脅威追跡を容易にするシステムである。
構造化されていないOSCTIテキストから構造化された脅威行動を抽出し、簡潔で表現力豊かなドメイン固有クエリ言語TBQLを使用して悪意のあるシステムアクティビティを探索する。
広範囲にわたる攻撃事例の評価は、現実的な脅威狩りにおけるThreatRaptorの精度と効率を実証している。
論文 参考訳(メタデータ) (2020-10-26T14:54:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。