論文の概要: ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management
- arxiv url: http://arxiv.org/abs/2212.10388v2
- Date: Wed, 30 Oct 2024 21:04:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:56:11.208603
- Title: ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management
- Title(参考訳): ThreatKG: オープンソースのサイバー脅威情報収集と管理を自動化するAI駆動システム
- Authors: Peng Gao, Xiaoyuan Liu, Edward Choi, Sibo Ma, Xinyu Yang, Dawn Song,
- Abstract要約: ThreatKGはOSCTIの収集と管理のための自動化システムである。
複数のソースから多数のOSCTIレポートを効率的に収集する。
さまざまな脅威エンティティに関する高品質な知識を抽出するために、AIベースの専門技術を使用する。
- 参考スコア(独自算出の注目度): 65.0114141380651
- License:
- Abstract: Open-source cyber threat intelligence (OSCTI) has become essential for keeping up with the rapidly changing threat landscape. However, current OSCTI gathering and management solutions mainly focus on structured Indicators of Compromise (IOC) feeds, which are low-level and isolated, providing only a narrow view of potential threats. Meanwhile, the extensive and interconnected knowledge found in the unstructured text of numerous OSCTI reports (e.g., security articles, threat reports) available publicly is still largely underexplored. To bridge the gap, we propose ThreatKG, an automated system for OSCTI gathering and management. ThreatKG efficiently collects a large number of OSCTI reports from multiple sources, leverages specialized AI-based techniques to extract high-quality knowledge about various threat entities and their relationships, and constructs and continuously updates a threat knowledge graph by integrating new OSCTI data. ThreatKG features a modular and extensible design, allowing for the addition of components to accommodate diverse OSCTI report structures and knowledge types. Our extensive evaluations demonstrate ThreatKG's practical effectiveness in enhancing threat knowledge gathering and management.
- Abstract(参考訳): オープンソースのサイバー脅威インテリジェンス(OSCTI)は、急速に変化する脅威の状況に追随するために欠かせないものになっている。
しかし、現在のOSCTIの収集・管理ソリューションは主に、低レベルで孤立した、潜在的な脅威を狭義に見ることのできる、構造化された妥協指標(IOC)フィードに焦点を当てている。
一方、多くのOSCTIレポート(例えば、セキュリティ記事、脅威レポート)の構造化されていないテキストに見られる、広範囲で相互に結びついた知識は、まだ明らかにされていない。
このギャップを埋めるため,OSCTIの収集・管理自動化システムであるThreatKGを提案する。
ThreatKGは、複数のソースから多数のOSCTIレポートを効率よく収集し、AIベースの専門技術を活用して、さまざまな脅威エンティティとその関係に関する高品質な知識を抽出し、新たなOSCTIデータを統合して脅威知識グラフを構築し、継続的に更新する。
ThreatKGはモジュラーで拡張可能な設計で、多様なOSCTIレポート構造や知識タイプに対応するコンポーネントを追加することができる。
我々は,ThreatKGによる脅威知識収集・管理の実践的効果を広く評価した。
関連論文リスト
- CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Actionable Cyber Threat Intelligence using Knowledge Graphs and Large Language Models [0.8192907805418583]
Microsoft、Trend Micro、CrowdStrikeはCTI抽出を容易にするために生成AIを使用している。
本稿では,Large Language Models(LLMs)とKGs(KGs)の進歩を利用して,実行可能なCTIの抽出を自動化するという課題に対処する。
本手法は,情報抽出と構造化を最適化するために,プロンプトエンジニアリング,ガイダンスフレームワーク,微調整などの手法を評価する。
実験により,本手法が関連する情報抽出に有効であることを示すとともに,指導と微調整により,迅速な工学よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-06-30T13:02:03Z) - SeCTIS: A Framework to Secure CTI Sharing [13.251593345960265]
現代の組織におけるIT依存型オペレーションの台頭は、サイバー攻撃に対する脆弱性を高めている。
現在の情報共有手法では、プライバシ保護が欠如しており、プロプライエタリデータとシークレットデータの漏洩に脆弱な組織を残している。
我々は、企業がCTIデータのプライバシーを保護し、協力できるように、SeCTIS(Secure Cyber Threat Intelligence Sharing)と呼ばれる新しいフレームワークを設計する。
論文 参考訳(メタデータ) (2024-06-20T08:34:50Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Blockchained Federated Learning for Threat Defense [0.0]
本研究ではフェデレーテッドラーニングを用いたインテリジェント脅威防御システムの開発について紹介する。
提案するフレームワークは,分散型かつ継続的なトレースアルゴリズムの学習にフェデレート学習を併用する。
提案するフレームワークの目的は,Deep Content Inspection(DCI)メソッドによって産業用IoT(IIoT)から派生したスマートシティネットワークトラフィックをインテリジェントに分類することである。
論文 参考訳(メタデータ) (2021-02-25T09:16:48Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKGはOSCTIの収集と管理を自動化するシステムである。
AIとNLP技術を組み合わせて、脅威行動に関する高忠実な知識を抽出する。
論文 参考訳(メタデータ) (2021-01-19T18:31:35Z) - A System for Efficiently Hunting for Cyber Threats in Computer Systems
Using Threat Intelligence [78.23170229258162]
ThreatRaptorは、OSCTIを使用してコンピュータシステムにおけるサイバー脅威ハンティングを容易にするシステムです。
ThreatRaptorは、(1)構造化OSCTIテキストから構造化された脅威行動を抽出する非監視で軽量で正確なNLPパイプライン、(2)簡潔で表現力のあるドメイン固有クエリ言語であるTBQLを提供し、悪意のあるシステムアクティビティを探し、(3)抽出された脅威行動からTBQLクエリを自動的に合成するクエリ合成メカニズムを提供する。
論文 参考訳(メタデータ) (2021-01-17T19:44:09Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptorは、オープンソースのCyber Threat Intelligence(OSCTI)を使用して、コンピュータシステムにおける脅威追跡を容易にするシステムである。
構造化されていないOSCTIテキストから構造化された脅威行動を抽出し、簡潔で表現力豊かなドメイン固有クエリ言語TBQLを使用して悪意のあるシステムアクティビティを探索する。
広範囲にわたる攻撃事例の評価は、現実的な脅威狩りにおけるThreatRaptorの精度と効率を実証している。
論文 参考訳(メタデータ) (2020-10-26T14:54:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。