Deep Reinforcement Learning with Embedded LQR Controllers
- URL: http://arxiv.org/abs/2101.07175v1
- Date: Mon, 18 Jan 2021 17:28:48 GMT
- Title: Deep Reinforcement Learning with Embedded LQR Controllers
- Authors: Wouter Caarls
- Abstract summary: We introduce a method that integrates LQR control into the action set, allowing generalization and avoiding fixing the computed control in the replay memory.
In all cases, we show that adding LQR control can improve performance, although the effect is more profound if it can be used to augment a discrete action set.
- Score: 1.256413718364189
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement learning is a model-free optimal control method that optimizes
a control policy through direct interaction with the environment. For reaching
tasks that end in regulation, popular discrete-action methods are not well
suited due to chattering in the goal state. We compare three different ways to
solve this problem through combining reinforcement learning with classical LQR
control. In particular, we introduce a method that integrates LQR control into
the action set, allowing generalization and avoiding fixing the computed
control in the replay memory if it is based on learned dynamics. We also embed
LQR control into a continuous-action method. In all cases, we show that adding
LQR control can improve performance, although the effect is more profound if it
can be used to augment a discrete action set.
Related papers
- Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
In robotics applications, smooth control signals are commonly preferred to reduce system wear and energy efficiency.
In this work, we aim to bridge this performance gap by growing discrete action spaces from coarse to fine control resolution.
Our work indicates that an adaptive control resolution in combination with value decomposition yields simple critic-only algorithms that yield surprisingly strong performance on continuous control tasks.
arXiv Detail & Related papers (2024-04-05T17:58:37Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Actor-Critic based Improper Reinforcement Learning [61.430513757337486]
We consider an improper reinforcement learning setting where a learner is given $M$ base controllers for an unknown Markov decision process.
We propose two algorithms: (1) a Policy Gradient-based approach; and (2) an algorithm that can switch between a simple Actor-Critic scheme and a Natural Actor-Critic scheme.
arXiv Detail & Related papers (2022-07-19T05:55:02Z) - Steady-State Error Compensation in Reference Tracking and Disturbance
Rejection Problems for Reinforcement Learning-Based Control [0.9023847175654602]
Reinforcement learning (RL) is a promising, upcoming topic in automatic control applications.
Initiative action state augmentation (IASA) for actor-critic-based RL controllers is introduced.
This augmentation does not require any expert knowledge, leaving the approach model free.
arXiv Detail & Related papers (2022-01-31T16:29:19Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
We propose a policy-search-for-model-predictive-control framework for MPC.
Specifically, we formulate the MPC as a parameterized controller, where the hard-to-optimize decision variables are represented as high-level policies.
Experiments show that our controller achieves robust and real-time control performance in both simulation and the real world.
arXiv Detail & Related papers (2021-12-07T17:39:24Z) - Residual Feedback Learning for Contact-Rich Manipulation Tasks with
Uncertainty [22.276925045008788]
emphglsrpl offers a formulation to improve existing controllers with reinforcement learning (RL)
We show superior performance of our approach on a contact-rich peg-insertion task under position and orientation uncertainty.
arXiv Detail & Related papers (2021-06-08T13:06:35Z) - Collision-Free Flocking with a Dynamic Squad of Fixed-Wing UAVs Using
Deep Reinforcement Learning [2.555094847583209]
We deal with the decentralized leader-follower flocking control problem through deep reinforcement learning (DRL)
We propose a novel reinforcement learning algorithm CACER-II for training a shared control policy for all the followers.
As a result, the variable-length system state can be encoded into a fixed-length embedding vector, which makes the learned DRL policies independent with the number or the order of followers.
arXiv Detail & Related papers (2021-01-20T11:23:35Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
We present a framework that synthesizes robust controllers for a quadruped robot.
A high-level controller learns to choose from a set of primitives in response to changes in the environment.
A low-level controller that utilizes an established control method to robustly execute the primitives.
arXiv Detail & Related papers (2020-09-21T16:49:26Z) - Optimal PID and Antiwindup Control Design as a Reinforcement Learning
Problem [3.131740922192114]
We focus on the interpretability of DRL control methods.
In particular, we view linear fixed-structure controllers as shallow neural networks embedded in the actor-critic framework.
arXiv Detail & Related papers (2020-05-10T01:05:26Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.