Cell division in deep material networks applied to multiscale strain
localization modeling
- URL: http://arxiv.org/abs/2101.07226v1
- Date: Mon, 18 Jan 2021 18:24:51 GMT
- Title: Cell division in deep material networks applied to multiscale strain
localization modeling
- Authors: Zeliang Liu
- Abstract summary: deep material networks (DMN) are a machine learning model with embedded mechanics in the building blocks.
A new cell division scheme is proposed to track the scale transition through the network, and its consistency is ensured by the physics of fitting parameters.
New crack surfaces in the cell are modeled by enriching cohesive layers, and failure algorithms are developed for crack initiation and evolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the increasing importance of strain localization modeling (e.g.,
failure analysis) in computer-aided engineering, there is a lack of effective
approaches to consistently modeling related material behaviors across multiple
length scales. We aim to address this gap within the framework of deep material
networks (DMN) - a physics-based machine learning model with embedded mechanics
in the building blocks. A new cell division scheme is proposed to track the
scale transition through the network, and its consistency is ensured by the
physics of fitting parameters. Essentially, each microscale node in the bottom
layer is described by an ellipsoidal cell with its dimensions back-propagated
from the macroscale material point. New crack surfaces in the cell are modeled
by enriching cohesive layers, and failure algorithms are developed for crack
initiation and evolution in the implicit DMN analysis. Besides single material
point studies, we apply the multiscale model to concurrent multiscale
simulations for the dynamic crush of a particle-reinforced composite tube and
various tests on carbon fiber reinforced polymer composites. For the latter,
experimental validations on an off-axis tensile test specimen are also
provided.
Related papers
- A POD-TANN approach for the multiscale modeling of materials and macroelement derivation in geomechanics [0.0]
This paper introduces a novel approach that combines Proper Orthogonal Decomposition (POD) with Thermodynamics-based Artificial Neural Networks (TANN) to capture the macroscopic behavior of complex inelastic systems and derive macroelements in geomechanics.
The results indicate that the POD-TANN approach not only offers accuracy reproducing in the studied responses, but also reduces computational costs, making it a practical tool for the multiscale modeling of heterogeneous inelastic geomechanical systems.
arXiv Detail & Related papers (2024-08-13T19:08:56Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
A hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated.
The proposed model benefits from the physics-based knowledge contained in the models used in the full-order micromodel by embedding them in a neural network.
arXiv Detail & Related papers (2024-04-05T12:40:03Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - LS-DYNA Machine Learning-based Multiscale Method for Nonlinear Modeling
of Short Fiber-Reinforced Composites [7.891561501854125]
Short-fiber-reinforced composites (SFRC) are high-performance engineering materials for lightweight structural applications in the automotive and electronics industries.
We present a machine learning-based multiscale method by integrating injection molding-induced microstructures, material homogenization, and Deep Material Network (DMN) for structural analysis of SFRC.
arXiv Detail & Related papers (2023-01-06T22:33:19Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
Multiscale, homogenization approaches are often used for performing reliable, accurate predictions of the macroscopic mechanical behavior of inelastic materials.
Data-driven approaches based on deep learning have risen as a promising alternative to replace ad-hoc laws and speed-up numerical methods.
Here, we propose Thermodynamics-based Artificial Neural Networks (TANN) for the modeling of mechanical materials with inelastic and complex microstructure.
arXiv Detail & Related papers (2021-08-30T11:50:38Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
We present an integrated data-driven modeling framework based on process modeling, material homogenization, and machine learning.
We are interested in the injection-molded short fiber reinforced composites, which have been identified as key material systems in automotive, aerospace, and electronics industries.
arXiv Detail & Related papers (2020-03-20T20:39:19Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
We show that gradient descent on overparametrized multilayer networks can induce rich implicit biases that are not RKHS norms.
We also demonstrate this transition empirically for more complex matrix factorization models and multilayer non-linear networks.
arXiv Detail & Related papers (2020-02-20T15:43:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.