論文の概要: A Comparison of Question Rewriting Methods for Conversational Passage
Retrieval
- arxiv url: http://arxiv.org/abs/2101.07382v1
- Date: Tue, 19 Jan 2021 00:17:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 11:17:59.168820
- Title: A Comparison of Question Rewriting Methods for Conversational Passage
Retrieval
- Title(参考訳): 会話パス検索における質問書き直し手法の比較
- Authors: Svitlana Vakulenko, Nikos Voskarides, Zhucheng Tu, Shayne Longpre
- Abstract要約: 会話文の検索は、元の質問を書き換えて変更することで、もはや会話履歴に依存しないようにする。
いくつかの質問書き直し手法が最近提案されているが、異なる探索パイプラインで比較された。
このギャップを埋めるために、TREC CAsT 2019および2020データセットの質問書き換え方法を、同じ検索パイプラインで徹底的に評価します。
- 参考スコア(独自算出の注目度): 6.490148466525755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational passage retrieval relies on question rewriting to modify the
original question so that it no longer depends on the conversation history.
Several methods for question rewriting have recently been proposed, but they
were compared under different retrieval pipelines. We bridge this gap by
thoroughly evaluating those question rewriting methods on the TREC CAsT 2019
and 2020 datasets under the same retrieval pipeline. We analyze the effect of
different types of question rewriting methods on retrieval performance and show
that by combining question rewriting methods of different types we can achieve
state-of-the-art performance on both datasets.
- Abstract(参考訳): 会話文の検索は、元の質問を書き換えて変更することで、もはや会話履歴に依存しないようにする。
いくつかの質問書き直し手法が最近提案されているが、異なる探索パイプラインで比較された。
このギャップを、TREC CAsT 2019と2020データセットの質問書き直し方法を、同じ検索パイプラインで徹底的に評価することで埋める。
質問書換え手法の違いが検索性能に及ぼす影響を分析し,質問書換え手法を組み合わせることで,両者のデータセットにおいて最先端の性能が得られることを示す。
関連論文リスト
- Retrieve, Summarize, Plan: Advancing Multi-hop Question Answering with an Iterative Approach [6.549143816134531]
二重機能要約器を備えたReSPと呼ばれる新しい反復RAG法を提案する。
マルチホップ質問応答HotpotQAと2WikiMultihopQAの実験結果から,本手法が最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-07-18T02:19:00Z) - Mixed-initiative Query Rewriting in Conversational Passage Retrieval [11.644235288057123]
TREC Conversational Assistance Track (CAsT) 2022の手法と実験について報告する。
本稿では,ユーザとシステム間の混在開始応答に基づいてクエリ書き換えを行う複合開始型クエリ書き換えモジュールを提案する。
TREC CAsT 2021 と TREC CAsT 2022 の2つのデータセットを用いた実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-07-17T19:38:40Z) - Phrase Retrieval for Open-Domain Conversational Question Answering with
Conversational Dependency Modeling via Contrastive Learning [54.55643652781891]
Open-Domain Conversational Question Answering (ODConvQA)は、マルチターン会話を通じて質問に答えることを目的としている。
そこで本研究では,単語列に対する句検索方式を用いて,回答を直接予測する手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T09:46:38Z) - LoL: A Comparative Regularization Loss over Query Reformulation Losses
for Pseudo-Relevance Feedback [70.44530794897861]
Pseudo-Relevance feedback (PRF) は、検索精度を向上させるための効果的なクエリ修正手法であることが証明されている。
既存のPRF手法は、同じクエリから派生した修正クエリを個別に扱うが、異なる数のフィードバックドキュメントを使用する。
そこで我々はLos-over-Loss(LoL)フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-25T10:42:50Z) - Joint Passage Ranking for Diverse Multi-Answer Retrieval [56.43443577137929]
質問に対する複数の異なる回答をカバーするために、パスの取得を必要とする探索不足の問題であるマルチアンサー検索について検討する。
モデルが別の有効な答えを逃す費用で同じ答えを含む通路を繰り返すべきではないので、このタスクは、検索された通路の共同モデリングを必要とします。
本稿では,再順位に着目したジョイントパス検索モデルであるJPRを紹介する。
回収された通路の合同確率をモデル化するために、JPRは、新しい訓練および復号アルゴリズムを備えた通路のシーケンスを選択する自動回帰リタイナを利用する。
論文 参考訳(メタデータ) (2021-04-17T04:48:36Z) - Memory Augmented Sequential Paragraph Retrieval for Multi-hop Question
Answering [32.69969157825044]
本稿では,段落を逐次データとしてモデル化し,マルチホップ情報検索をシーケンスラベリングタスクの一種とみなす新しいアーキテクチャを提案する。
本手法は,公開テキストマルチホップQAデータセットであるHotpotQAのフルwikiとイントラクタサブタスクの両方で評価する。
論文 参考訳(メタデータ) (2021-02-07T08:15:51Z) - Open Question Answering over Tables and Text [55.8412170633547]
オープンな質問応答(QA)では、質問に対する回答は、質問に対する回答を含む可能性のある文書を検索して分析することによって生成される。
ほとんどのオープンQAシステムは、構造化されていないテキストからのみ情報を取得することを検討している。
我々は,このタスクの性能を評価するために,新しい大規模データセット Open Table-and-Text Question Answering (OTT-QA) を提案する。
論文 参考訳(メタデータ) (2020-10-20T16:48:14Z) - Query Resolution for Conversational Search with Limited Supervision [63.131221660019776]
本稿では,双方向トランスフォーマに基づくニューラルクエリ解決モデルQuReTeCを提案する。
我々はQuReTeCが最先端モデルより優れており、また、QuReTeCのトレーニングに必要な人為的なデータ量を大幅に削減するために、我々の遠隔監視手法が有効であることを示す。
論文 参考訳(メタデータ) (2020-05-24T11:37:22Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。