Deterministic generation of multidimensional photonic cluster states
using time-delay feedback
- URL: http://arxiv.org/abs/2101.07772v2
- Date: Tue, 6 Jul 2021 18:06:14 GMT
- Title: Deterministic generation of multidimensional photonic cluster states
using time-delay feedback
- Authors: Yu Shi, Edo Waks
- Abstract summary: Cluster states are useful in many quantum information processing applications.
This work proposes a protocol to deterministically generate multidimensional photonic cluster states using a single atom-cavity system and time-delay feedback.
- Score: 9.83302372715731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cluster states are useful in many quantum information processing
applications. In particular, universal measurement-based quantum computation
(MBQC) utilizes 2D cluster states, and topologically fault-tolerant MBQC
requires cluster states with three or higher dimensions. This work proposes a
protocol to deterministically generate multidimensional photonic cluster states
using a single atom-cavity system and time-delay feedback. The dimensionality
of the cluster state increases linearly with the number of time-delay feedback.
We firstly give a diagrammatic derivation of the tensor network states, which
is valuable in simulating matrix product states and projected entangled pair
states generated from sequential photons. Our method also provides a simple way
to bridge and analyze the experimental imperfections and the logical errors of
the generated states. In this method, we analyze the generated cluster states
under realistic experimental conditions and address both one-qubit and
two-qubit errors. Through numerical simulation, we observe an optimal
atom-cavity cooperativity for the fidelity of the generated states, which is
surprising given the prevailing assumption that higher cooperativity systems
are inherently better for photonic applications.
Related papers
- Generation of three-dimensional cluster entangled state [0.0]
We demonstrate deterministic generation of a 3D cluster state based on the photonic continuous-variable platform.
Our work paves the way toward fault-tolerant and universal measurement-based quantum computing.
arXiv Detail & Related papers (2023-09-11T13:20:54Z) - Coherent-cluster-state generation in networks of degenerate optical
parametric oscillators [4.015029887580199]
We show that coherent cluster states can be generated in DOPO networks with the help of beam splitters and classical pumps.
We map the generated states to an effective spin space using modular variables, which allows us to apply entanglement criteria tailored for spin-based cluster states.
arXiv Detail & Related papers (2023-01-31T14:34:53Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Deterministic generation of qudit photonic graph states from quantum
emitters [0.0]
We show that our approach can be applied to generate any qudit graph state.
We construct protocols to generate one- and two-dimensional qudit cluster states, absolutely maximally entangled states, and logical states of quantum error correcting codes.
arXiv Detail & Related papers (2022-11-23T19:00:01Z) - Deterministic Generation of Multidimensional Photonic Cluster States
with a Single Quantum Emitter [1.2233362977312945]
We present an experimental implementation in the microwave domain of a resource-efficient scheme for the deterministic generation of 2D photonic cluster states.
By utilizing a coupled resonator array as a slow-light waveguide, a single flux-tunable transmon qubit as a quantum emitter, and a second auxiliary transmon as a switchable mirror, we achieve rapid, shaped emission of entangled photon wavepackets.
We leverage these capabilities to generate a 2D cluster state of four photons with 70% fidelity, as verified by tomographic reconstruction of the quantum state.
arXiv Detail & Related papers (2022-06-21T02:08:18Z) - Quantum-Memory-Enhanced Preparation of Nonlocal Graph States [10.086067943202416]
Graph states are an important class of multipartite entangled states.
We show an efficient scheme to prepare graph states with only two atomic excitations in quantum networks.
Our work demonstrates the prospect of efficient generation of multipartite entangled states in large-scale distributed systems.
arXiv Detail & Related papers (2022-02-27T15:42:09Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.