Quantum-Memory-Enhanced Preparation of Nonlocal Graph States
- URL: http://arxiv.org/abs/2202.13386v1
- Date: Sun, 27 Feb 2022 15:42:09 GMT
- Title: Quantum-Memory-Enhanced Preparation of Nonlocal Graph States
- Authors: Sheng Zhang, Yu-Kai Wu, Chang Li, Nan Jiang, Yun-Fei Pu, and Lu-Ming
Duan
- Abstract summary: Graph states are an important class of multipartite entangled states.
We show an efficient scheme to prepare graph states with only two atomic excitations in quantum networks.
Our work demonstrates the prospect of efficient generation of multipartite entangled states in large-scale distributed systems.
- Score: 10.086067943202416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph states are an important class of multipartite entangled states.
Previous experimental generation of graph states and in particular the
Greenberger-Horne-Zeilinger (GHZ) states in linear optics quantum information
schemes is subjected to an exponential decay in efficiency versus the system
size, which limits its large-scale applications in quantum networks. Here we
demonstrate an efficient scheme to prepare graph states with only a polynomial
overhead using long-lived atomic quantum memories. We generate atom-photon
entangled states in two atomic ensembles asynchronously, retrieve the stored
atomic excitations only when both sides succeed, and further project them into
a four-photon GHZ state. We measure the fidelity of this GHZ state and further
demonstrate its applications in the violation of Bell-type inequalities and in
quantum cryptography. Our work demonstrates the prospect of efficient
generation of multipartite entangled states in large-scale distributed systems
with applications in quantum information processing and metrology.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Fusion of deterministically generated photonic graph states [0.0]
Entanglement has evolved from an enigmatic concept of quantum physics to a key ingredient of quantum technology.
Here we achieve this goal by employing an optical resonator containing two atoms.
arXiv Detail & Related papers (2024-03-18T16:46:00Z) - Observation of quantum nonlocality in Greenberger-Horne-Zeilinger entanglement on a silicon chip [4.895323415185291]
Greenberger-Horne-Zeilinger (GHZ) state allows one to observe the striking conflict of quantum physics to local realism.
integrated photonic chip capable of generating and manipulating the four-photon GHZ state.
Our work paves the way to perform fundamental tests of quantum physics with complex integrated quantum devices.
arXiv Detail & Related papers (2023-11-28T12:43:46Z) - Generating scalable graph states in an atom-nanophotonic interface [0.0]
scalable graph states are essential for measurement-based quantum computation and many entanglement-assisted applications in quantum technologies.
Here we propose to prepare high-fidelity and scalable graph states in one and two dimensions, which can be tailored in an atom-nanophotonic cavity.
An analysis of state fidelity is also presented, and the state preparation probability can be optimized via multiqubit state carvings and sequential single-photon probes.
arXiv Detail & Related papers (2023-10-06T03:33:32Z) - Scalable generation and detection of on-demand W states in nanophotonic
circuits [4.495431203748202]
We generate an 8-mode on-demand single photon W states, using nanowire quantum dots and a silicon nitride photonic chip.
We demonstrate a reliable, scalable technique for reconstructing W-state in photonic circuits using Fourier and real-space imaging, supported by the Gerchberg-Saxton phase retrieval algorithm.
The study provides a new imaging approach of assessing multipartite entanglement in W-states, paving the way for further progress in image processing and Fourier-space analysis techniques for complex quantum systems.
arXiv Detail & Related papers (2023-07-12T12:15:13Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Deterministic Generation of Multidimensional Photonic Cluster States
with a Single Quantum Emitter [1.2233362977312945]
We present an experimental implementation in the microwave domain of a resource-efficient scheme for the deterministic generation of 2D photonic cluster states.
By utilizing a coupled resonator array as a slow-light waveguide, a single flux-tunable transmon qubit as a quantum emitter, and a second auxiliary transmon as a switchable mirror, we achieve rapid, shaped emission of entangled photon wavepackets.
We leverage these capabilities to generate a 2D cluster state of four photons with 70% fidelity, as verified by tomographic reconstruction of the quantum state.
arXiv Detail & Related papers (2022-06-21T02:08:18Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.