Deterministic Generation of Multidimensional Photonic Cluster States
with a Single Quantum Emitter
- URL: http://arxiv.org/abs/2206.10076v1
- Date: Tue, 21 Jun 2022 02:08:18 GMT
- Title: Deterministic Generation of Multidimensional Photonic Cluster States
with a Single Quantum Emitter
- Authors: Vinicius S. Ferreira, Gihwan Kim, Andreas Butler, Hannes Pichler, and
Oskar Painter
- Abstract summary: We present an experimental implementation in the microwave domain of a resource-efficient scheme for the deterministic generation of 2D photonic cluster states.
By utilizing a coupled resonator array as a slow-light waveguide, a single flux-tunable transmon qubit as a quantum emitter, and a second auxiliary transmon as a switchable mirror, we achieve rapid, shaped emission of entangled photon wavepackets.
We leverage these capabilities to generate a 2D cluster state of four photons with 70% fidelity, as verified by tomographic reconstruction of the quantum state.
- Score: 1.2233362977312945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multidimensional photonic graph states, such as cluster states, have
prospective applications in quantum metrology, secure quantum communication,
and measurement-based quantum computation. However, to date, generation of
multidimensional cluster states of photonic qubits has relied on probabilistic
methods that limit the scalability of typical generation schemes in optical
systems. Here we present an experimental implementation in the microwave domain
of a resource-efficient scheme for the deterministic generation of 2D photonic
cluster states. By utilizing a coupled resonator array as a slow-light
waveguide, a single flux-tunable transmon qubit as a quantum emitter, and a
second auxiliary transmon as a switchable mirror, we achieve rapid, shaped
emission of entangled photon wavepackets, and selective time-delayed feedback
of photon wavepackets to the emitter qubit. We leverage these capabilities to
generate a 2D cluster state of four photons with 70\% fidelity, as verified by
tomographic reconstruction of the quantum state. We discuss how our scheme
could be straightforwardly extended to the generation of even larger cluster
states, of even higher dimension, thereby expanding the scope and practical
utility of such states for quantum information processing tasks.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - A quantum-network register assembled with optical tweezers in an optical cavity [0.0]
Quantum computation and quantum communication are expected to provide users with capabilities inaccessible by classical physics.
One solution is to develop a quantum network consisting of small-scale quantum registers containing computation qubits.
We report on a register that uses both optical tweezers and optical lattices to deterministically assemble a two-dimensional array of atoms in an optical cavity.
arXiv Detail & Related papers (2024-07-12T09:20:57Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - On-demand shaped photon emission based on a parametrically modulated qubit [14.88027830561737]
A single-rail and dual-rail time-bin shaped photon generator can act as a quantum interface of a point-to-point quantum network.
We develop an efficient photon field measurement setup based on the data stream processing of GPU.
The results demonstrate that our method is hardware efficient, simple to implement, and scalable.
arXiv Detail & Related papers (2024-05-02T16:53:54Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Efficient Generation of Subnatural-Linewidth Biphotons by Controlled
Quantum Interference [0.9877468274612591]
Biphotons of narrow bandwidth and long temporal length play a crucial role in long-distance quantum communication.
By manipulating the two-component biphoton wavefunction, we demonstrate biphotons with subnatural linewidth in the sub-MHz regime.
Our work has potential applications in realizing quantum repeaters and large cluster states for LDQC and LOQC.
arXiv Detail & Related papers (2020-09-09T02:39:50Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Engineering continuous and discrete variable quantum vortex states by
nonlocal photon subtraction in a reconfigurable photonic chip [0.0]
We study the production of entangled two- and N-mode quantum states of light in optical waveguides.
We propose a quantum photonic circuit that produces a reconfigurable superposition of photon subtraction on two single-mode squeezed states.
arXiv Detail & Related papers (2020-04-11T11:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.