Continuum approach to real time dynamics of 1+1D gauge field theory: out
of horizon correlations of the Schwinger model
- URL: http://arxiv.org/abs/2101.07807v2
- Date: Tue, 18 May 2021 09:41:19 GMT
- Title: Continuum approach to real time dynamics of 1+1D gauge field theory: out
of horizon correlations of the Schwinger model
- Authors: Ivan Kukuljan
- Abstract summary: We develop a truncated Hamiltonian method to study nonequilibrium real time dynamics in the Schwinger model.
We show that the 1+1D quantum electrodynamics admits the dynamical horizon violation effect.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a truncated Hamiltonian method to study nonequilibrium real time
dynamics in the Schwinger model - the quantum electrodynamics in D=1+1. This is
a purely continuum method that captures reliably the invariance under local and
global gauge transformations and does not require a discretisation of
space-time. We use it to study a phenomenon that is expected not to be
tractable using lattice methods: we show that the 1+1D quantum electrodynamics
admits the dynamical horizon violation effect which was recently discovered in
the case of the sine-Gordon model. Following a quench of the model, oscillatory
long-range correlations develop, manifestly violating the horizon bound. We
find that the oscillation frequencies of the out-of-horizon correlations
correspond to twice the masses of the mesons of the model suggesting that the
effect is mediated through correlated meson pairs. We also report on the
cluster violation in the massive version of the model, previously known in the
massless Schwinger model. The results presented here reveal a novel
nonequilibrium phenomenon in 1+1D quantum electrodynamics and make a first step
towards establishing that the horizon violation effect is present in gauge
field theory.
Related papers
- Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - The Closed and Open Unbalanced Dicke Trimer Model: Critical Properties
and Nonlinear Semiclassical Dynamics [5.824077816472029]
We study a generalization of the recently introduced Dicke trimer model.
In the extreme unbalanced limit, the symmetry of the Tavis-Cummings model is restored.
We observe the emergence of nonequilibrium phases characterized by trivial and non-trivial dynamical signatures.
arXiv Detail & Related papers (2023-03-21T11:23:18Z) - Entangling dynamics from effective rotor/spin-wave separation in
U(1)-symmetric quantum spin models [0.0]
Non-equilibrium dynamics of quantum spin models is a most challenging topic, due to the exponentiality of Hilbert space.
A particularly important class of evolutions is the one governed by U(1) symmetric Hamiltonians.
We show that the dynamics of the OAT model can be closely reproduced by systems with power-lawdecaying interactions.
arXiv Detail & Related papers (2023-02-18T09:37:45Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - The nonlinear semiclassical dynamics of the unbalanced, open Dicke model [0.0]
The Dicke model exhibits a quantum phase transition to a state in which the atoms collectively emit light into the cavity mode, known as superradiance.
We study this system in the semiclassical (mean field) limit, neglecting the role of quantum fluctuations.
We find that a flip of the collective spin can result in the sudden emergence of chaotic dynamics.
arXiv Detail & Related papers (2020-04-09T11:13:20Z) - Dissipative dynamics of an interacting spin system with collective
damping [1.3980986259786221]
Hamiltonian and Lindblad dynamics in quantum systems give rise to non-equillibrium phenomena.
In this paper, we investigate this interplay of dynamics in infinite range Heisenberg model coupled to a non-Markovian bath.
arXiv Detail & Related papers (2018-03-03T14:13:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.