SEMULATOR: Emulating the Dynamics of Crossbar Array-based Analog Neural
System with Regression Neural Networks
- URL: http://arxiv.org/abs/2101.07864v1
- Date: Tue, 19 Jan 2021 21:08:33 GMT
- Title: SEMULATOR: Emulating the Dynamics of Crossbar Array-based Analog Neural
System with Regression Neural Networks
- Authors: Chaeun Lee, Seyoung Kim
- Abstract summary: We propose a methodology, SEMULATOR which uses a deep neural network to emulate the behavior of crossbar-based analog computing system.
With the proposed neural architecture, we experimentally and theoretically shows that it emulates a MAC unit for neural computation.
- Score: 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As deep neural networks require tremendous amount of computation and memory,
analog computing with emerging memory devices is a promising alternative to
digital computing for edge devices. However, because of the increasing
simulation time for analog computing system, it has not been explored. To
overcome this issue, analytically approximated simulators are developed, but
these models are inaccurate and narrow down the options for peripheral circuits
for multiply-accumulate operation (MAC). In this sense, we propose a
methodology, SEMULATOR (SiMULATOR by Emulating the analog computing block)
which uses a deep neural network to emulate the behavior of crossbar-based
analog computing system. With the proposed neural architecture, we
experimentally and theoretically shows that it emulates a MAC unit for neural
computation. In addition, the simulation time is incomparably reduced when it
compared to the circuit simulators such as SPICE.
Related papers
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Applying generative neural networks for fast simulations of the ALICE (CERN) experiment [0.0]
This thesis investigates the application of state-of-the-art advances in generative neural networks for fast simulation of the Zero Degree Calorimeter (ZDC) neutron detector at CERN.
Traditional simulation methods using the GEANT Monte Carlo toolkit, while accurate, are computationally demanding.
The thesis provides a comprehensive literature review on the application of neural networks in computer vision, fast simulations using machine learning, and generative neural networks in high-energy physics.
arXiv Detail & Related papers (2024-07-10T17:08:59Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
arXiv Detail & Related papers (2024-04-08T16:34:35Z) - CIMulator: A Comprehensive Simulation Platform for Computing-In-Memory
Circuit Macros with Low Bit-Width and Real Memory Materials [0.5325753548715747]
This paper presents a simulation platform, namely CIMulator, for quantifying the efficacy of various synaptic devices in neuromorphic accelerators.
Non-volatile memory devices, such as resistive random-access memory, ferroelectric field-effect transistor, and volatile static random-access memory devices, can be selected as synaptic devices.
A multilayer perceptron and convolutional neural networks (CNNs), such as LeNet-5, VGG-16, and a custom CNN named C4W-1, are simulated to evaluate the effects of these synaptic devices on the training and inference outcomes.
arXiv Detail & Related papers (2023-06-26T12:36:07Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Inference with Artificial Neural Networks on Analog Neuromorphic
Hardware [0.0]
BrainScaleS-2 ASIC comprises mixed-signal neurons and synapse circuits.
System can also operate in a vector-matrix multiplication and accumulation mode for artificial neural networks.
arXiv Detail & Related papers (2020-06-23T17:25:06Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - CSM-NN: Current Source Model Based Logic Circuit Simulation -- A Neural
Network Approach [5.365198933008246]
CSM-NN is a scalable simulation framework with optimized neural network structures and processing algorithms.
Experiments show that CSM-NN reduces the simulation time by up to $6times$ compared to a state-of-the-art current source model based simulator running on a CPU.
CSM-NN also provides high accuracy levels, with less than $2%$ error, compared to HSPICE.
arXiv Detail & Related papers (2020-02-13T00:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.