The Diagnosis of Asthma using Hilbert-Huang Transform and Deep Learning
on Lung Sounds
- URL: http://arxiv.org/abs/2101.08288v1
- Date: Wed, 20 Jan 2021 19:04:33 GMT
- Title: The Diagnosis of Asthma using Hilbert-Huang Transform and Deep Learning
on Lung Sounds
- Authors: G\"okhan Altan, Yakup Kutlu, Adnan \"Ozhan Pekmezci, Serkan Nural
- Abstract summary: The statistical features are calculated from intrinsic mode functions that are extracted by applying the Hilbert Transform to the lung sounds.
The classification of the lung sounds from asthma and healthy subjects is performed using Deep Belief Networks (DBN)
- Score: 2.294014185517203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung auscultation is the most effective and indispensable method for
diagnosing various respiratory disorders by using the sounds from the airways
during inspirium and exhalation using a stethoscope. In this study, the
statistical features are calculated from intrinsic mode functions that are
extracted by applying the HilbertHuang Transform to the lung sounds from 12
different auscultation regions on the chest and back. The classification of the
lung sounds from asthma and healthy subjects is performed using Deep Belief
Networks (DBN). The DBN classifier model with two hidden layers has been tested
using 5-fold cross validation method. The proposed DBN separated lung sounds
from asthmatic and healthy subjects with high classification performance rates
of 84.61%, 85.83%, and 77.11% for overall accuracy, sensitivity, and
selectivity, respectively using frequencytime analysis.
Related papers
- Towards Enhanced Classification of Abnormal Lung sound in Multi-breath: A Light Weight Multi-label and Multi-head Attention Classification Method [0.0]
This study aims to develop an auxiliary diagnostic system for classifying abnormal lung respiratory sounds.
Addressing the issue of class imbalance and lack of diversity in existing respiratory sound datasets, our study employs a lightweight and highly accurate model.
arXiv Detail & Related papers (2024-07-15T15:40:02Z) - Abnormal Respiratory Sound Identification Using Audio-Spectrogram Vision Transformer [19.993594487490682]
The AS-ViT method was evaluated using three metrics and achieved 79.1% and 59.8% for 60:40 split ratio and 86.4% and 69.3% for 80:20 split ratio.
The proposed AS-ViT method was evaluated using three metrics and achieved 79.1% and 59.8% for 60:40 split ratio and 86.4% and 69.3% for 80:20 split ratio.
arXiv Detail & Related papers (2024-05-14T06:31:38Z) - Stethoscope-guided Supervised Contrastive Learning for Cross-domain
Adaptation on Respiratory Sound Classification [1.690115983364313]
We introduce cross-domain adaptation techniques, which transfer the knowledge from a source domain to a distinct target domain.
In particular, by considering different stethoscope types as individual domains, we propose a novel stethoscope-guided supervised contrastive learning approach.
The experimental results on the ICBHI dataset demonstrate that the proposed methods are effective in reducing the domain dependency and achieving the ICBHI Score of 61.71%, which is a significant improvement of 2.16% over the baseline.
arXiv Detail & Related papers (2023-12-15T08:34:31Z) - COVID-19 Detection System: A Comparative Analysis of System Performance Based on Acoustic Features of Cough Audio Signals [0.6963971634605796]
This research aims to explore various acoustic features that enhance the performance of machine learning (ML) models in detecting COVID-19 from cough signals.
It investigates the efficacy of three feature extraction techniques, including Mel Frequency Cepstral Coefficients (MFCC), Chroma, and Spectral Contrast features, when applied to two machine learning algorithms, Support Vector Machine (SVM) and Multilayer Perceptron (MLP)
The proposed system provides a practical solution and demonstrates state-of-the-art classification performance, with an AUC of 0.843 on the COUGHVID dataset and 0.953 on the Virufy
arXiv Detail & Related papers (2023-09-08T08:33:24Z) - SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped
Domain Attention [47.44114201293201]
Lung cancer is the leading cause of cancer death worldwide.
Current pulmonary nodule detection methods are usually domain-specific.
We propose a slice grouped domain attention (SGDA) module to enhance the generalization capability of the pulmonary nodule detection networks.
arXiv Detail & Related papers (2023-03-07T03:17:49Z) - BronchusNet: Region and Structure Prior Embedded Representation Learning
for Bronchus Segmentation and Classification [53.53758990624962]
We propose a region and structure prior embedded framework named BronchusNet to achieve accurate bronchial analysis.
For bronchus segmentation, we propose an adaptive hard region-aware UNet that incorporates multi-level prior guidance of hard pixel-wise samples.
For the classification of bronchial branches, we propose a hybrid point-voxel graph learning module.
arXiv Detail & Related papers (2022-05-14T02:32:33Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
We adapt an ensemble of Convolutional Neural Networks to classify if a speaker is infected with COVID-19 or not.
Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks.
arXiv Detail & Related papers (2020-12-29T01:14:17Z) - Respiratory Sound Classification Using Long-Short Term Memory [62.997667081978825]
This paper examines the difficulties that exist when attempting to perform sound classification as it relates to respiratory disease classification.
An examination on the use of deep learning and long short-term memory networks is performed in order to identify how such a task can be implemented.
arXiv Detail & Related papers (2020-08-06T23:11:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.