An Explainable Neural Radiomic Sequence Model with Spatiotemporal Continuity for Quantifying 4DCT-based Pulmonary Ventilation
- URL: http://arxiv.org/abs/2503.23898v1
- Date: Mon, 31 Mar 2025 09:47:03 GMT
- Title: An Explainable Neural Radiomic Sequence Model with Spatiotemporal Continuity for Quantifying 4DCT-based Pulmonary Ventilation
- Authors: Rihui Zhang, Haiming Zhu, Jingtong Zhao, Lei Zhang, Fang-Fang Yin, Chunhao Wang, Zhenyu Yang,
- Abstract summary: We propose an explainable neural radiomic sequence model to identify regions of compromised pulmonary ventilation.<n>A cohort of 45 lung cancer patients from the VAMPIRE dataset was analyzed.<n>The proposed model demonstrated robust performance, achieving average (range) Dice similarity coefficients of 0.78 (0.74-0.79) for 25 PET cases and 0.78 (0.74-0.82) for 20 SPECT cases.
- Score: 8.782603967426857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate evaluation of regional lung ventilation is essential for the management and treatment of lung cancer patients, supporting assessments of pulmonary function, optimization of therapeutic strategies, and monitoring of treatment response. Currently, ventilation scintigraphy using nuclear medicine techniques is widely employed in clinical practice; however, it is often time-consuming, costly, and entails additional radiation exposure. In this study, we propose an explainable neural radiomic sequence model to identify regions of compromised pulmonary ventilation based on four-dimensional computed tomography (4DCT). A cohort of 45 lung cancer patients from the VAMPIRE dataset was analyzed. For each patient, lung volumes were segmented from 4DCT, and voxel-wise radiomic features (56-dimensional) were extracted across the respiratory cycle to capture local intensity and texture dynamics, forming temporal radiomic sequences. Ground truth ventilation defects were delineated voxel-wise using Galligas-PET and DTPA-SPECT. To identify compromised regions, we developed a temporal saliency-enhanced explainable long short-term memory (LSTM) network trained on the radiomic sequences. Temporal saliency maps were generated to highlight key features contributing to the model's predictions. The proposed model demonstrated robust performance, achieving average (range) Dice similarity coefficients of 0.78 (0.74-0.79) for 25 PET cases and 0.78 (0.74-0.82) for 20 SPECT cases. The temporal saliency map explained three key radiomic sequences in ventilation quantification: during lung exhalation, compromised pulmonary function region typically exhibits (1) an increasing trend of intensity and (2) a decreasing trend of homogeneity, in contrast to healthy lung tissue.
Related papers
- Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - An Efficient and Robust Method for Chest X-Ray Rib Suppression that
Improves Pulmonary Abnormality Diagnosis [0.49998148477760956]
Suppression of thoracic bone shadows on chest X-rays (CXRs) has been indicated to improve the diagnosis of pulmonary disease.
Previous approaches can be categorized as unsupervised physical and supervised deep learning models.
We propose a generalizable yet efficient workflow of two stages: (1) training pairs generation with GT bone shadows eliminated in minimization by a physical model in spatially transformed gradient fields.
(2) fully supervised image denoising network training on stage-one datasets for fast rib removal on incoming CXRs.
arXiv Detail & Related papers (2023-02-19T23:47:02Z) - What Makes for Automatic Reconstruction of Pulmonary Segments [50.216231776343115]
3D reconstruction of pulmonary segments plays an important role in surgical treatment planning of lung cancer.
However, automatic reconstruction of pulmonary segments remains unexplored in the era of deep learning.
We propose ImPulSe, a deep implicit surface model designed for pulmonary segment reconstruction.
arXiv Detail & Related papers (2022-07-07T04:24:17Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Deformation Driven Seq2Seq Longitudinal Tumor and Organs-at-Risk
Prediction for Radiotherapy [12.05638699290782]
We present a novel 3D sequence-to-sequence model based on Convolution Long Short Term Memory (ConvLSTM)
It predicts future anatomical deformations and changes in gross tumor volume as well as critical OARs.
We validated our model on two radiotherapy datasets.
arXiv Detail & Related papers (2021-06-16T18:29:16Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - The Diagnosis of Asthma using Hilbert-Huang Transform and Deep Learning
on Lung Sounds [2.294014185517203]
The statistical features are calculated from intrinsic mode functions that are extracted by applying the Hilbert Transform to the lung sounds.
The classification of the lung sounds from asthma and healthy subjects is performed using Deep Belief Networks (DBN)
arXiv Detail & Related papers (2021-01-20T19:04:33Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Deep Learning-based Four-region Lung Segmentation in Chest Radiography
for COVID-19 Diagnosis [9.117659716068083]
We propose a four region lung segmentation method to assist accurate quantification of COVID 19 pneumonia.
A deep learning based model in CXR can accurately segment and quantify regional distribution of pulmonary opacities in patients with COVID 19 pneumonia.
arXiv Detail & Related papers (2020-09-26T14:32:13Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.