Enhancing Generative Models via Quantum Correlations
- URL: http://arxiv.org/abs/2101.08354v1
- Date: Wed, 20 Jan 2021 22:57:22 GMT
- Title: Enhancing Generative Models via Quantum Correlations
- Authors: Xun Gao, Eric R. Anschuetz, Sheng-Tao Wang, J. Ignacio Cirac and
Mikhail D. Lukin
- Abstract summary: Generative modeling using samples drawn from the probability distribution constitutes a powerful approach for unsupervised machine learning.
We show theoretically that such quantum correlations provide a powerful resource for generative modeling.
We numerically test this separation on standard machine learning data sets and show that it holds for practical problems.
- Score: 1.6099403809839032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative modeling using samples drawn from the probability distribution
constitutes a powerful approach for unsupervised machine learning. Quantum
mechanical systems can produce probability distributions that exhibit quantum
correlations which are difficult to capture using classical models. We show
theoretically that such quantum correlations provide a powerful resource for
generative modeling. In particular, we provide an unconditional proof of
separation in expressive power between a class of widely-used generative
models, known as Bayesian networks, and its minimal quantum extension. We show
that this expressivity advantage is associated with quantum nonlocality and
quantum contextuality. Furthermore, we numerically test this separation on
standard machine learning data sets and show that it holds for practical
problems. The possibility of quantum advantage demonstrated in this work not
only sheds light on the design of useful quantum machine learning protocols but
also provides inspiration to draw on ideas from quantum foundations to improve
purely classical algorithms.
Related papers
- Quantum-Noise-Driven Generative Diffusion Models [1.6385815610837167]
We propose three quantum-noise-driven generative diffusion models that could be experimentally tested on real quantum systems.
The idea is to harness unique quantum features, in particular the non-trivial interplay among coherence, entanglement and noise.
Our results are expected to pave the way for new quantum-inspired or quantum-based generative diffusion algorithms.
arXiv Detail & Related papers (2023-08-23T09:09:32Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Shadows of quantum machine learning [2.236957801565796]
We introduce a new class of quantum models where quantum resources are only required during training, while the deployment of the trained model is classical.
We prove that this class of models is universal for classically-deployed quantum machine learning.
arXiv Detail & Related papers (2023-05-31T18:00:02Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Generative model for learning quantum ensemble via optimal transport
loss [0.9404723842159504]
We propose a quantum generative model that can learn quantum ensemble.
The proposed model paves the way for a wide application such as the health check of quantum devices.
arXiv Detail & Related papers (2022-10-19T17:35:38Z) - Classical surrogates for quantum learning models [0.7734726150561088]
We introduce the concept of a classical surrogate, a classical model which can be efficiently obtained from a trained quantum learning model.
We show that large classes of well-analyzed re-uploading models have a classical surrogate.
arXiv Detail & Related papers (2022-06-23T14:37:02Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.