論文の概要: Graphical Models for Financial Time Series and Portfolio Selection
- arxiv url: http://arxiv.org/abs/2101.09214v1
- Date: Fri, 22 Jan 2021 16:56:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-20 22:38:42.517962
- Title: Graphical Models for Financial Time Series and Portfolio Selection
- Title(参考訳): 金融時系列とポートフォリオ選択のためのグラフィカルモデル
- Authors: Ni Zhan, Yijia Sun, Aman Jakhar, He Liu
- Abstract要約: 我々は, PCA-KMeans, オートエンコーダ, 動的クラスタリング, 構造学習を用いて最適ポートフォリオを構築する。
この研究は、グラフィカルモデルが時系列データの時間依存性を効果的に学習し、資産管理に有用であることが示唆されている。
- 参考スコア(独自算出の注目度): 3.444844635251667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We examine a variety of graphical models to construct optimal portfolios.
Graphical models such as PCA-KMeans, autoencoders, dynamic clustering, and
structural learning can capture the time varying patterns in the covariance
matrix and allow the creation of an optimal and robust portfolio. We compared
the resulting portfolios from the different models with baseline methods. In
many cases our graphical strategies generated steadily increasing returns with
low risk and outgrew the S&P 500 index. This work suggests that graphical
models can effectively learn the temporal dependencies in time series data and
are proved useful in asset management.
- Abstract(参考訳): 最適なポートフォリオを構築するために,様々なグラフィカルモデルを検討する。
PCA-KMeans、オートエンコーダ、動的クラスタリング、構造学習などのグラフィカルモデルは、共分散行列の時間変化パターンをキャプチャし、最適かつ堅牢なポートフォリオを作成することができる。
異なるモデルから得られたポートフォリオをベースラインメソッドと比較した。
多くの場合、我々のグラフィカル戦略はリスクの低いリターンを着実に増加させ、S&P 500指数を上回ります。
この研究は、グラフィックモデルが時系列データの時間依存性を効果的に学習でき、アセットマネジメントにおいて有用であることが証明されている。
関連論文リスト
- Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks [4.2056926734482065]
これはリスクの高い企業を取り入れ、ポートフォリオの最適化に全企業を使う最初の研究だ。
グラフ注意ネットワーク(GAT)を利用した新しい手法の提案と実証試験を行った。
GATは、ネットワークデータを利用して非線形関係を明らかにするディープラーニングベースのモデルである。
論文 参考訳(メタデータ) (2024-07-22T10:50:47Z) - Sequential Modeling Enables Scalable Learning for Large Vision Models [120.91839619284431]
本稿では,言語データを用いずにLVM(Large Vision Model)を学習できる新しい逐次モデリング手法を提案する。
我々は、生画像やビデオや注釈付きデータソースを表現できる共通フォーマット「視覚文」を定義した。
論文 参考訳(メタデータ) (2023-12-01T18:59:57Z) - Generative Machine Learning for Multivariate Equity Returns [0.0]
本研究では,条件付き重み付きオートエンコーダと条件付き正規化フローの有効性について検討した。
私たちが取り組んだ主な問題は、S&P 500の全てのメンバーの関節分布をモデル化すること、すなわち500次元の関節分布を学習することである。
この生成モデルは、現実的な合成データの生成、ボラティリティと相関推定、リスク分析、ポートフォリオ最適化など、金融に幅広い応用があることが示される。
論文 参考訳(メタデータ) (2023-11-21T18:41:48Z) - Portfolio Selection via Topological Data Analysis [2.3901301169141056]
本稿では、共通株式の投資ポートフォリオを構築するための2段階の方法を提案する。
この方法は時系列表現の生成とその後のクラスタリングを含む。
実験の結果,提案システムは他の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-08-15T09:36:43Z) - Structured Cooperative Learning with Graphical Model Priors [98.53322192624594]
ローカルデータに制限のある分散デバイス上で、さまざまなタスクに対してパーソナライズされたモデルをトレーニングする方法を研究する。
本稿では,デバイス間の協調グラフをグラフィカルモデルにより生成する「構造化協調学習(SCooL)」を提案する。
SCooLを評価し,既存の分散学習手法と比較した。
論文 参考訳(メタデータ) (2023-06-16T02:41:31Z) - Deep incremental learning models for financial temporal tabular datasets
with distribution shifts [0.9790236766474201]
このフレームワークは、単純な基本的なビルディングブロック(決定木)を使用して、必要な複雑さの自己相似モデルを構築する。
我々は,NumeraiデータセットでトレーニングしたXGBoostモデルを用いて提案手法を実証し,異なるモデルスナップショット上での2層のXGBoostモデルの深部アンサンブルが高品質な予測を提供することを示す。
論文 参考訳(メタデータ) (2023-03-14T14:10:37Z) - Learning Gaussian Graphical Models with Latent Confounders [74.72998362041088]
我々は、グラフィカルモデルにおける推論のための2つの戦略を、潜伏した共同創設者と比較し、対比する。
これら2つのアプローチは、類似した目標を持っているが、それらは共起に関する異なる仮定によって動機付けられている。
これら2つのアプローチの強みを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-14T00:53:03Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [55.28436972267793]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
個々の資産を選択する代わりに、ポートフォリオを形成するために市場指標のETF(Exchange-Traded Funds)を交換します。
我々は,本手法を広範囲のアルゴリズムと比較し,本モデルがテスト期間中に最高の性能を得ることを示す。
論文 参考訳(メタデータ) (2020-05-27T21:28:43Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
現在のモデルに基づく強化学習アプローチでは、単に学習されたブラックボックスシミュレータとしてモデルを使用する。
その微分可能性を利用してモデルをより効果的に活用する方法を示す。
論文 参考訳(メタデータ) (2020-05-16T19:18:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。