論文の概要: Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer
- arxiv url: http://arxiv.org/abs/2408.03320v2
- Date: Thu, 15 Aug 2024 04:10:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 12:51:16.397539
- Title: Hedge Fund Portfolio Construction Using PolyModel Theory and iTransformer
- Title(参考訳): ポリモデル理論とiTransformerを用いたヘッジファンドポートフォリオ構築
- Authors: Siqiao Zhao, Zhikang Dong, Zeyu Cao, Raphael Douady,
- Abstract要約: ヘッジファンドポートフォリオ構築のためのPolyModel理論を実装した。
我々は,長期アルファ,長期比,SVaRなどの定量的尺度を作成する。
また、最新のディープラーニング技術(iTransformer)を使って、上昇傾向を捉えています。
- 参考スコア(独自算出の注目度): 1.4061979259370274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When constructing portfolios, a key problem is that a lot of financial time series data are sparse, making it challenging to apply machine learning methods. Polymodel theory can solve this issue and demonstrate superiority in portfolio construction from various aspects. To implement the PolyModel theory for constructing a hedge fund portfolio, we begin by identifying an asset pool, utilizing over 10,000 hedge funds for the past 29 years' data. PolyModel theory also involves choosing a wide-ranging set of risk factors, which includes various financial indices, currencies, and commodity prices. This comprehensive selection mirrors the complexities of the real-world environment. Leveraging on the PolyModel theory, we create quantitative measures such as Long-term Alpha, Long-term Ratio, and SVaR. We also use more classical measures like the Sharpe ratio or Morningstar's MRAR. To enhance the performance of the constructed portfolio, we also employ the latest deep learning techniques (iTransformer) to capture the upward trend, while efficiently controlling the downside, using all the features. The iTransformer model is specifically designed to address the challenges in high-dimensional time series forecasting and could largely improve our strategies. More precisely, our strategies achieve better Sharpe ratio and annualized return. The above process enables us to create multiple portfolio strategies aiming for high returns and low risks when compared to various benchmarks.
- Abstract(参考訳): ポートフォリオを構築する場合、重要な問題は、多くの金融時系列データが不足しているため、機械学習手法の適用が困難であることだ。
ポリモデル理論はこの問題を解くことができ、様々な側面からポートフォリオ構築において優位性を示すことができる。
ヘッジファンドポートフォリオを構築するためのPolyModel理論を実装するために、過去29年間に1万以上のヘッジファンドを活用して資産プールを特定します。
ポリモデル理論はまた、様々な金融指標、通貨、商品価格を含む幅広いリスク要因を選択することを含む。
この包括的な選択は、現実世界の環境の複雑さを反映している。
ポリモデル理論を応用して、長期アルファ、長期比、SVaRなどの定量的尺度を作成する。
また、シャープ比やモーニングスターのMRARといった古典的な測度も使います。
構築されたポートフォリオの性能を向上させるために、最新のディープラーニング技術(iTransformer)を使用して、上向きの傾向を捉えながら、すべての機能を使って効率よくダウンサイドを制御します。
iTransformerモデルは、高次元時系列予測の課題に対処するために特別に設計されており、戦略を大幅に改善することができる。
より正確には、私たちの戦略はシャープ比の改善と年次リターンを達成する。
このプロセスにより、さまざまなベンチマークと比較した場合、高いリターンと低いリスクを目的とした複数のポートフォリオ戦略を作成することができる。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Explainable Post hoc Portfolio Management Financial Policy of a Deep Reinforcement Learning agent [44.99833362998488]
我々はポートフォリオ管理のための新しい説明可能な深層強化学習(XDRL)アプローチを開発した。
方法論を実践することにより、エージェントの行動を予測する時間内に解釈し、投資政策の要件に従うかどうかを評価することができる。
論文 参考訳(メタデータ) (2024-07-19T17:40:39Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Combining Transformer based Deep Reinforcement Learning with
Black-Litterman Model for Portfolio Optimization [0.0]
モデルフリーのアルゴリズムとして、深層強化学習(DRL)エージェントは、教師なしの方法で環境と対話することで学習し、決定する。
DRLエージェントとBlack-Litterman (BL)モデルを組み合わせたハイブリッドポートフォリオ最適化モデルを提案する。
我々のDRLエージェントは、様々な比較ポートフォリオ選択戦略と代替DRLフレームワークを、累積リターンで少なくとも42%上回っている。
論文 参考訳(メタデータ) (2024-02-23T16:01:37Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Deep Learning Statistical Arbitrage [0.0]
本稿では,統計的仲裁のための統一的な概念枠組みを提案し,新しいディープラーニングソリューションを開発した。
我々は、条件付き遅延資産価格要素から残余ポートフォリオとして類似資産の仲裁ポートフォリオを構築する。
我々は、これらの残余ポートフォリオの時系列信号を、最も強力な機械学習時系列ソリューションの1つを用いて抽出する。
論文 参考訳(メタデータ) (2021-06-08T00:48:25Z) - MAPS: Multi-agent Reinforcement Learning-based Portfolio Management
System [23.657021288146158]
マルチエージェント強化学習に基づくポートフォリオ管理システム(MAPS)を提案する。
MAPSは、各エージェントが独立した「投資者」であり、独自のポートフォリオを作成する協調システムである。
米国の12年間の市場データによる実験の結果、MAPSはシャープ比でベースラインの大半を上回っている。
論文 参考訳(メタデータ) (2020-07-10T14:08:12Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - The new methods for equity fund selection and optimal portfolio
construction [3.0166620288400776]
我々は、相互ファンドのトップホールディングスから、より小さな株式プールからロングショートポートフォリオの作り方を示す。
これらの手法は統計的証拠に基づいており、モデルの妥当性を綿密に監視し、修復戦略を作成する必要がある。
論文 参考訳(メタデータ) (2020-04-20T08:24:12Z) - TPLVM: Portfolio Construction by Student's $t$-process Latent Variable
Model [3.5408022972081694]
我々は,低次元の潜伏変数による財務時系列の非ガウス的変動を記述するために,学生のTPLVM($t$-process latent variable model)を提案する。
これらのポートフォリオを比較することで、提案されたポートフォリオが既存のガウスプロセス潜在変数モデルよりも優れていることを確認した。
論文 参考訳(メタデータ) (2020-01-29T02:02:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。