論文の概要: Representation and Learning of Context-Specific Causal Models with
Observational and Interventional Data
- arxiv url: http://arxiv.org/abs/2101.09271v1
- Date: Fri, 22 Jan 2021 18:48:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-20 21:01:56.646968
- Title: Representation and Learning of Context-Specific Causal Models with
Observational and Interventional Data
- Title(参考訳): 観測・干渉データを用いた文脈特化因数モデルの表現と学習
- Authors: Eliana Duarte, Liam Solus
- Abstract要約: 離散データのコンテキスト固有情報をエンコードする因果モデルの表現と学習の問題を検討する。
このクラスは、DAGモデル内のコンテキスト固有の情報を、DAGのコレクションによってステージ化ツリー、またはそれと同等の方法でキャプチャするステージ化ツリーモデルのサブクラスです。
我々は、DAGのグローバルマルコフ特性を一般化するCStreeで符号化された非対称な条件独立関係の完全集合を特徴づける。
- 参考スコア(独自算出の注目度): 0.7614628596146599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of representation and learning of causal models that
encode context-specific information for discrete data. To represent such models
we define the class of CStrees. This class is a subclass of staged tree models
that captures context-specific information in a DAG model by the use of a
staged tree, or equivalently, by a collection of DAGs. We provide a
characterization of the complete set of asymmetric conditional independence
relations encoded by a CStree that generalizes the global Markov property for
DAGs. As a consequence, we obtain a graphical characterization of model
equivalence for CStrees generalizing that of Verma and Pearl for DAG models. We
also provide a closed-form formula for the maximum likelihood estimator of a
CStree and use it to show that the Bayesian Information Criterion is a locally
consistent score function for this model class. We then use the theory for
general interventions in staged tree models to provide a global Markov property
and a characterization of model equivalence for general interventions in
CStrees. As examples, we apply these results to two real data sets, learning
BIC-optimal CStrees for each and analyzing their context-specific causal
structure.
- Abstract(参考訳): 本稿では,文脈固有の情報を離散データにエンコードする因果モデルの表現と学習の問題を考える。
そのようなモデルを表現するために、CStreesのクラスを定義します。
このクラスはステージドツリーモデルのサブクラスであり、DAGモデルのコンテキスト固有の情報をステージドツリーまたは同等にDAGのコレクションによって取得する。
我々は、DAGのグローバルマルコフ特性を一般化するCStreeで符号化された非対称な条件独立関係の完全集合を特徴づける。
その結果,DAGモデルに対してVermaとPearlを一般化したCSツリーのモデル等価性のグラフィカルな特徴付けが得られる。
また, cstree の最大確率推定器に対する閉形式式を提供し, ベイズ情報量基準がこのモデルクラスに対して局所的に一貫したスコア関数であることを示す。
次に、段階木モデルにおける一般介入の理論を用いて、大域マルコフ特性と cstree における一般介入に対するモデル同値のキャラクタリゼーションを提供する。
例えば、これらの結果を2つの実際のデータセットに適用し、それぞれのbic-optimal cstreeを学習し、コンテキスト固有の因果構造を分析する。
関連論文リスト
- Causal Modeling in Multi-Context Systems: Distinguishing Multiple Context-Specific Causal Graphs which Account for Observational Support [12.738813972869528]
複数のコンテキストからのデータによる因果構造学習は、機会と課題の両方をもたらす。
本稿では,文脈間の観察支援の違いが因果グラフの識別可能性に及ぼす影響について検討する。
構造因果モデルにおける文脈固有の独立性をモデル化する枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-27T10:34:58Z) - Tree-based variational inference for Poisson log-normal models [47.82745603191512]
階層木は、しばしば近接基準に基づいてエンティティを組織するために使用される。
現在のカウントデータモデルは、この構造化情報を利用していない。
本稿では,PLNモデルの拡張としてPLN-Treeモデルを導入し,階層的カウントデータをモデル化する。
論文 参考訳(メタデータ) (2024-06-25T08:24:35Z) - Introducing Diminutive Causal Structure into Graph Representation Learning [19.132025125620274]
本稿では,グラフニューラルネット(GNN)が専門的な最小の因果構造から洞察を得ることを可能にする新しい手法を提案する。
本手法は,これらの小型因果構造のモデル表現から因果知識を抽出する。
論文 参考訳(メタデータ) (2024-06-13T00:18:20Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - SSL Framework for Causal Inconsistency between Structures and
Representations [23.035761299444953]
深層学習と因果発見のクロスポリン化は、画像、ビデオ、テキストなどの統計的でないデータ形式における因果関係の解明を目指す、急成長する研究分野を触媒している。
我々は、不確定データに適した介入戦略を理論的に開発し、因果一貫性条件(CCC)を導出する。
CCCは様々な分野で重要な役割を果たす可能性がある。
論文 参考訳(メタデータ) (2023-10-28T08:29:49Z) - From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling [17.074858228123706]
基本的な理論、方法論、欠点、データセット、メトリクスに重点を置いています。
フェアネス、プライバシ、アウト・オブ・ディストリビューションの一般化、精密医療、生物科学における因果生成モデルの応用について述べる。
論文 参考訳(メタデータ) (2023-10-17T05:45:32Z) - Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes [51.84122462615402]
本研究では,変分ベイズ-DAG-GFlowNetを用いて因果モデルの構造と機構を学習する手法を提案する。
我々は,GFlowNetを用いたベイズ因果構造学習の手法を拡張し,線形ガウスモデルのパラメータを学習する。
論文 参考訳(メタデータ) (2022-11-04T21:57:39Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
クラスタ因果図(略してC-DAG)と呼ばれる新しいタイプのグラフィカルモデルを導入する。
C-DAGは、限定された事前知識に基づいて変数間の関係を部分的に定義することができる。
我々はC-DAGに対する因果推論のための基礎と機械を開発する。
論文 参考訳(メタデータ) (2022-02-22T21:27:31Z) - Improving Aspect-based Sentiment Analysis with Gated Graph Convolutional
Networks and Syntax-based Regulation [89.38054401427173]
Aspect-based Sentiment Analysis (ABSA) は、特定の側面に向けて文の感情極性を予測する。
依存関係ツリーは、ABSAの最先端のパフォーマンスを生成するために、ディープラーニングモデルに統合することができる。
本稿では,この2つの課題を克服するために,グラフに基づく新しいディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2020-10-26T07:36:24Z) - A Meta-Bayesian Model of Intentional Visual Search [0.0]
本稿では,分類的知覚とササード計画の根底にある神経機構のベイズ的解釈を取り入れたビジュアルサーチの計算モデルを提案する。
擬似行動と人的行動の有意義な比較を可能にするため、参加者は視線に追従する窓から隠蔽されたMNIST桁を分類する必要がある。
本モデルは,観察された人間の行動から主観的パラメータを回収し,高い解釈可能性を維持しながら,分類精度などの人間の行動指標を再カプセル化することができる。
論文 参考訳(メタデータ) (2020-06-05T16:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。