論文の概要: Causal Modeling in Multi-Context Systems: Distinguishing Multiple Context-Specific Causal Graphs which Account for Observational Support
- arxiv url: http://arxiv.org/abs/2410.20405v1
- Date: Sun, 27 Oct 2024 10:34:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:22.199763
- Title: Causal Modeling in Multi-Context Systems: Distinguishing Multiple Context-Specific Causal Graphs which Account for Observational Support
- Title(参考訳): マルチコンテキストシステムにおける因果モデリング:観測支援を考慮した複数の文脈特化因果グラフの識別
- Authors: Martin Rabel, Wiebke Günther, Jakob Runge, Andreas Gerhardus,
- Abstract要約: 複数のコンテキストからのデータによる因果構造学習は、機会と課題の両方をもたらす。
本稿では,文脈間の観察支援の違いが因果グラフの識別可能性に及ぼす影響について検討する。
構造因果モデルにおける文脈固有の独立性をモデル化する枠組みを提案する。
- 参考スコア(独自算出の注目度): 12.738813972869528
- License:
- Abstract: Causal structure learning with data from multiple contexts carries both opportunities and challenges. Opportunities arise from considering shared and context-specific causal graphs enabling to generalize and transfer causal knowledge across contexts. However, a challenge that is currently understudied in the literature is the impact of differing observational support between contexts on the identifiability of causal graphs. Here we study in detail recently introduced [6] causal graph objects that capture both causal mechanisms and data support, allowing for the analysis of a larger class of context-specific changes, characterizing distribution shifts more precisely. We thereby extend results on the identifiability of context-specific causal structures and propose a framework to model context-specific independence (CSI) within structural causal models (SCMs) in a refined way that allows to explore scenarios where these graph objects differ. We demonstrate how this framework can help explaining phenomena like anomalies or extreme events, where causal mechanisms change or appear to change under different conditions. Our results contribute to the theoretical foundations for understanding causal relations in multi-context systems, with implications for generalization, transfer learning, and anomaly detection. Future work may extend this approach to more complex data types, such as time-series.
- Abstract(参考訳): 複数のコンテキストからのデータによる因果構造学習は、機会と課題の両方をもたらす。
機会は、コンテキストにまたがる因果知識の一般化と伝達を可能にする共有およびコンテキスト固有の因果グラフを考えることから生じる。
しかし、文献で現在検討されている課題は、因果グラフの識別可能性に対する文脈間の観察的支援の違いによる影響である。
本稿では,最近導入された[6]因果グラフオブジェクトについて詳細に検討し,因果関係とデータサポートの両方を捉えることで,より大規模な文脈依存的な変化を解析し,より正確に分布シフトを特徴付ける。
これにより、文脈固有の因果構造の識別可能性に関する結果を拡張し、これらのグラフオブジェクトが異なるシナリオを探索できるように、構造化因果モデル(SCM)内で文脈固有の独立性(CSI)をモデル化する枠組みを提案する。
この枠組みは、原因のメカニズムが変化したり、異なる条件下で変化しているように見えるような、異常や極端な事象などの現象を説明するのにどのように役立つかを実証する。
本研究は,多言語システムにおける因果関係の理解に関する理論的基礎に寄与し,一般化,転帰学習,異常検出に寄与する。
今後の作業では、このアプローチを時系列など、より複雑なデータ型にまで拡張する可能性がある。
関連論文リスト
- SSL Framework for Causal Inconsistency between Structures and
Representations [23.035761299444953]
深層学習と因果発見のクロスポリン化は、画像、ビデオ、テキストなどの統計的でないデータ形式における因果関係の解明を目指す、急成長する研究分野を触媒している。
我々は、不確定データに適した介入戦略を理論的に開発し、因果一貫性条件(CCC)を導出する。
CCCは様々な分野で重要な役割を果たす可能性がある。
論文 参考訳(メタデータ) (2023-10-28T08:29:49Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2023-08-24T16:06:36Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Causal schema induction for knowledge discovery [21.295680010103602]
本稿では、時間構造、事象構造、因果構造を組み合わせたテキストグラフスキーマのデータセットであるTorquestraを紹介する。
データセットを3つの知識発見タスクにベンチマークし、それぞれのモデルの構築と評価を行います。
その結果、因果構造を利用するシステムは、類似の因果的意味成分を共有するテキストを特定するのに効果的であることがわかった。
論文 参考訳(メタデータ) (2023-03-27T16:55:49Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
クラスタ因果図(略してC-DAG)と呼ばれる新しいタイプのグラフィカルモデルを導入する。
C-DAGは、限定された事前知識に基づいて変数間の関係を部分的に定義することができる。
我々はC-DAGに対する因果推論のための基礎と機械を開発する。
論文 参考訳(メタデータ) (2022-02-22T21:27:31Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
変分オートエンコーダ(VAE)の枠組みは、観測から独立した因子をアンタングルするために一般的に用いられる。
本稿では, 因果内因性因子を因果内因性因子に変換する因果層を含むVOEベースの新しいフレームワークCausalVAEを提案する。
その結果、CausalVAEが学習した因果表現は意味論的に解釈可能であり、DAG(Directed Acyclic Graph)としての因果関係は精度良く同定された。
論文 参考訳(メタデータ) (2020-04-18T20:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。