論文の概要: A systematic literature review on state-of-the-art deep learning methods
for process prediction
- arxiv url: http://arxiv.org/abs/2101.09320v2
- Date: Tue, 26 Jan 2021 11:23:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-20 17:20:28.256555
- Title: A systematic literature review on state-of-the-art deep learning methods
for process prediction
- Title(参考訳): プロセス予測のための最先端深層学習法に関する体系的文献レビュー
- Authors: Dominic A. Neu, Johannes Lahann and Peter Fettke
- Abstract要約: 近年,様々なデータ処理手法と予測アルゴリズムを適用し,複数のプロセス予測手法が提案されている。
この研究は、機械学習の代替手段を一貫して上回っているように見えるため、ディープラーニングアルゴリズムに焦点を当てている。
ログデータ、評価メトリクス、著者が使用するベースラインのセットが多様化し、結果の比較が困難になる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Process mining enables the reconstruction and evaluation of business
processes based on digital traces in IT systems. An increasingly important
technique in this context is process prediction. Given a sequence of events of
an ongoing trace, process prediction allows forecasting upcoming events or
performance measurements. In recent years, multiple process prediction
approaches have been proposed, applying different data processing schemes and
prediction algorithms. This study focuses on deep learning algorithms since
they seem to outperform their machine learning alternatives consistently.
Whilst having a common learning algorithm, they use different data
preprocessing techniques, implement a variety of network topologies and focus
on various goals such as outcome prediction, time prediction or control-flow
prediction. Additionally, the set of log-data, evaluation metrics and baselines
used by the authors diverge, making the results hard to compare. This paper
attempts to synthesise the advantages and disadvantages of the procedural
decisions in these approaches by conducting a systematic literature review.
- Abstract(参考訳): プロセスマイニングは、ITシステムのデジタルトレースに基づくビジネスプロセスの再構築と評価を可能にする。
この文脈でますます重要なテクニックは、プロセス予測である。
進行中のトレースの一連のイベントが与えられた後、プロセス予測は今後のイベントやパフォーマンス測定を予測できる。
近年,様々なデータ処理手法と予測アルゴリズムを適用し,複数のプロセス予測手法が提案されている。
この研究は、機械学習の代替手段を一貫して上回っているように見えるため、ディープラーニングアルゴリズムに焦点を当てている。
共通の学習アルゴリズムを持つ一方で、異なるデータ前処理技術を使用し、様々なネットワークトポロジを実装し、結果予測、時間予測、制御フロー予測といった様々な目標に集中する。
さらに、著者が使用するログデータ、評価指標、ベースラインのセットが多様化し、結果の比較が困難になる。
本稿では,これらのアプローチにおける手続き決定の長所と短所を体系的な文献レビューによって合成することを試みる。
関連論文リスト
- Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Knowledge-Driven Modulation of Neural Networks with Attention Mechanism
for Next Activity Prediction [8.552757384215813]
本稿では、手続き的プロセスモデルを用いて表現された背景知識を利用して、トレーニングデータのアンダーサンプリングをオフセットするシンボリック[Neuro]システムを提案する。
具体的には,NN分野における新たな技術であるアテンション機構を備えたNNを用いた予測を行う。
このシステムは、予測タスクの性能改善を示す複数の実生活ログでテストされている。
論文 参考訳(メタデータ) (2023-12-14T12:02:35Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
非論理的スケジューリングでは、優先度不明な処理条件でジョブをスケジューリングするためのオンライン戦略を見つけることが課題である。
我々はこのよく研究された問題を、アルゴリズム設計に(信頼できない)予測を統合する、最近人気の高い学習強化された設定で再検討する。
これらの予測には所望の特性があり, 高い性能保証を有するアルゴリズムと同様に, 自然な誤差測定が可能であることを示す。
論文 参考訳(メタデータ) (2022-02-21T13:18:11Z) - Learning Predictions for Algorithms with Predictions [49.341241064279714]
予測器を学習するアルゴリズムに対して,一般的な設計手法を導入する。
オンライン学習の手法を応用して、敵のインスタンスに対して学習し、堅牢性と一貫性のあるトレードオフを調整し、新しい統計的保証を得る。
両部マッチング,ページマイグレーション,スキーレンタル,ジョブスケジューリングの手法を解析することにより,学習アルゴリズムの導出におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-18T17:25:43Z) - Interpreting Process Predictions using a Milestone-Aware Counterfactual
Approach [0.0]
本稿では,予測プロセス分析の文脈において,一般的なモデルに依存しない逆ファクトアルアルゴリズムであるDiCEの利用について検討する。
分析の結果,プロセス予測の導出に際し,アルゴリズムは限定的であることがわかった。
本稿では,足跡の異なる段階における節目対応の反事実の導出を支援する手法を提案する。
論文 参考訳(メタデータ) (2021-07-19T09:14:16Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
論文 参考訳(メタデータ) (2021-07-05T16:32:45Z) - Evaluating Explainable Methods for Predictive Process Analytics: A
Functionally-Grounded Approach [2.2448567386846916]
予測プロセス分析は、ビジネスプロセスの実行インスタンスの将来の状態を予測することに焦点を当てる。
現在のLIMEやSHAPのような説明可能な機械学習手法は、ブラックボックスモデルの解釈に利用できる。
XGBoost上に構築されたプロセス予測モデルの解釈におけるLIMEとSHAPの性能評価に,提案手法を適用した。
論文 参考訳(メタデータ) (2020-12-08T05:05:19Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - An empirical comparison of deep-neural-network architectures for next
activity prediction using context-enriched process event logs [0.0]
研究者は様々な予測ビジネスプロセス監視(PBPM)技術を提案している。
これらのテクニックはディープニューラルネットワーク(DNN)に依存し、プロセスが実行されているコンテキストに関する情報を検討する。
我々は,提案する3つのDNNアーキテクチャの予測品質と,実証された5つの符号化手法と,コンテキストに富んだ5つの実生活イベントログに基づいて評価する。
論文 参考訳(メタデータ) (2020-05-03T21:33:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。