論文の概要: Linking the Dynamics of User Stance to the Structure of Online
Discussions
- arxiv url: http://arxiv.org/abs/2101.09852v2
- Date: Sat, 27 Feb 2021 23:59:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 00:48:20.716644
- Title: Linking the Dynamics of User Stance to the Structure of Online
Discussions
- Title(参考訳): ユーザのスタンスのダイナミクスとオンライン議論の構造を結びつける
- Authors: Christine Largeron, Andrei Mardale, Marian-Andrei Rizoiu
- Abstract要約: 議論対象に対するユーザのスタンスが,オンライン上での議論に影響を及ぼすかどうかを考察する。
機械学習モデルに基づいた一連の予測演習をセットアップしました。
その結果,最も情報に富む特徴は,ユーザが参加することを好む議論のスタンス・コンポジションに関係していることがわかった。
- 参考スコア(独自算出の注目度): 6.853826783413853
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper studies the dynamics of opinion formation and polarization in
social media. We investigate whether users' stance concerning contentious
subjects is influenced by the online discussions they are exposed to and
interactions with users supporting different stances. We set up a series of
predictive exercises based on machine learning models. Users are described
using several posting activities features capturing their overall activity
levels, posting success, the reactions their posts attract from users of
different stances, and the types of discussions in which they engage. Given the
user description at present, the purpose is to predict their stance in the
future. Using a dataset of Brexit discussions on the Reddit platform, we show
that the activity features regularly outperform the textual baseline,
confirming the link between exposure to discussion and opinion. We find that
the most informative features relate to the stance composition of the
discussion in which users prefer to engage.
- Abstract(参考訳): 本稿ではソーシャルメディアにおける意見形成と偏極のダイナミクスについて考察する。
批判的対象に対するユーザのスタンスが、露出しているオンラインディスカッションや、異なるスタンスを支持するユーザとのインタラクションに影響されているかを検討する。
機械学習モデルに基づいて,一連の予測演習を実施しました。
ユーザーは、アクティビティの全体レベルを捉え、成功を投稿し、投稿が異なるスタンスを持つユーザーから寄せられた反応、彼らが関与する議論の種類など、いくつかの投稿アクティビティ機能を使って記述される。
現状のユーザ記述を考えると,今後のユーザの姿勢を予測することが目的である。
Redditプラットフォーム上でのブレグジットに関する議論のデータセットを用いて、アクティビティ機能はテキストベースラインを定期的に上回り、議論と意見への露出の関連性を確認する。
もっとも有意義な特徴は,ユーザが参加を希望する議論のスタンス構成に関係していることがわかった。
関連論文リスト
- Personalized Topic Selection Model for Topic-Grounded Dialogue [24.74527189182273]
現在のモデルは、ユーザに興味がなく、文脈的に無関係なトピックを予測する傾向があります。
我々はtextbfTopic-grounded textbfDialogue のための textbfPersonalized topic stextbfElection model を提案する。
提案手法は,多種多様な応答を生成でき,最先端のベースラインを達成できる。
論文 参考訳(メタデータ) (2024-06-04T06:09:49Z) - Inside the echo chamber: Linguistic underpinnings of misinformation on Twitter [4.62503518282081]
ソーシャルメディア利用者は、誤った情報や議論の的になっている話題に関するコメントを含む投稿を共有することで、誤報の拡散をオンラインで推進している。
この研究は、誤情報に関する会話が言語の使用を通してどのように媒介されるかを探る。
論文 参考訳(メタデータ) (2024-04-24T15:37:12Z) - Fostering User Engagement in the Critical Reflection of Arguments [3.26297440422721]
本研究では,人間との対話を行うシステムを提案する。
ユーザが既存の意見に集中しすぎれば,システムに介入することが可能になる。
58名の被験者を対象に,本モデルと介入機構の効果について調査を行った。
論文 参考訳(メタデータ) (2023-08-17T15:48:23Z) - Thread With Caution: Proactively Helping Users Assess and Deescalate
Tension in Their Online Discussions [13.455968033357065]
オンラインディスカッションプラットフォームにとって、インキュビティは依然として大きな課題だ。
伝統的に、プラットフォームはモデレーターを -- アルゴリズムの支援の有無に関わらず -- 頼りにしており、コメントの削除やユーザー禁止といった修正措置を取っている。
本研究では,会話における既存の緊張感に対する意識を積極的に高め,ユーザに直接力を与える補完的パラダイムを提案する。
論文 参考訳(メタデータ) (2022-12-02T19:00:03Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Understanding How People Rate Their Conversations [73.17730062864314]
我々は、人々が会話エージェントとのインタラクションをどのように評価するかをよりよく理解するために研究を行う。
我々は、評価の変動を説明する変数として、同意性と外向性に焦点を当てる。
論文 参考訳(メタデータ) (2022-06-01T00:45:32Z) - Interacting with Non-Cooperative User: A New Paradigm for Proactive
Dialogue Policy [83.61404191470126]
インタラクティブな環境下でプロアクティブなポリシーを学習できるI-Proという新しいソリューションを提案する。
具体的には,4つの要因からなる学習目標重みを通じてトレードオフを学習する。
実験の結果,I-Proは,有効性と解釈性において,ベースラインを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2022-04-07T14:11:31Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Who Responded to Whom: The Joint Effects of Latent Topics and Discourse
in Conversation Structure [53.77234444565652]
会話談話における応答関係を同定し,会話の開始に応答発話をリンクする。
単語分布における潜在トピックと会話を学習し,ペアワイズ開始応答リンクを予測するモデルを提案する。
英語と中国語の会話における実験結果から,我々のモデルは過去の芸術の状況を大きく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T17:46:00Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Improving Cyberbully Detection with User Interaction [34.956581421295]
本稿では,ユーザインタラクションの時間的ダイナミクスとトピックコヒーレンスをモデル化するためのグラフベース手法を提案する。
我々は,セッションレベルのいじめ検出とコメントレベルの事例スタディのタスクにより,アプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2020-11-01T08:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。