Weakly Supervised Learning for Facial Behavior Analysis : A Review
- URL: http://arxiv.org/abs/2101.09858v4
- Date: Mon, 14 Oct 2024 23:11:30 GMT
- Title: Weakly Supervised Learning for Facial Behavior Analysis : A Review
- Authors: R. Gnana Praveen, Patrick Cardinal, Eric Granger,
- Abstract summary: We provide a comprehensive review of weakly supervised learning approaches for facial behavior analysis with both categorical as well as dimensional labels.
We then systematically review the existing state-of-the-art approaches and provide a taxonomy of these approaches along with their insights and limitations.
We discuss the remaining challenges and opportunities along with the potential research directions in order to apply facial behavior analysis with weak labels in real life situations.
- Score: 13.994609732846344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the recent years, there has been a shift in facial behavior analysis from the laboratory-controlled conditions to the challenging in-the-wild conditions due to the superior performance of deep learning based approaches for many real world applications.However, the performance of deep learning approaches relies on the amount of training data. One of the major problems with data acquisition is the requirement of annotations for large amount of training data. Labeling process of huge training data demands lot of human support with strong domain expertise for facial expressions or action units, which is difficult to obtain in real-time environments.Moreover, labeling process is highly vulnerable to ambiguity of expressions or action units, especially for intensities due to the bias induced by the domain experts. Therefore, there is an imperative need to address the problem of facial behavior analysis with weak annotations. In this paper, we provide a comprehensive review of weakly supervised learning (WSL) approaches for facial behavior analysis with both categorical as well as dimensional labels along with the challenges and potential research directions associated with it. First, we introduce various types of weak annotations in the context of facial behavior analysis and the corresponding challenges associated with it. We then systematically review the existing state-of-the-art approaches and provide a taxonomy of these approaches along with their insights and limitations. In addition, widely used data-sets in the reviewed literature and the performance of these approaches along with evaluation principles are summarized. Finally, we discuss the remaining challenges and opportunities along with the potential research directions in order to apply facial behavior analysis with weak labels in real life situations.
Related papers
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.
Models may behave unreliably due to poorly explored failure modes.
causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Semantics-Oriented Multitask Learning for DeepFake Detection: A Joint Embedding Approach [77.65459419417533]
We propose an automatic dataset expansion technique to support semantics-oriented DeepFake detection tasks.
We also resort to joint embedding of face images and their corresponding labels for prediction.
Our method improves the generalizability of DeepFake detection and renders some degree of model interpretation by providing human-understandable explanations.
arXiv Detail & Related papers (2024-08-29T07:11:50Z) - Multi-Faceted Question Complexity Estimation Targeting Topic Domain-Specificity [0.0]
This paper presents a novel framework for domain-specific question difficulty estimation, leveraging a suite of NLP techniques and knowledge graph analysis.
We introduce four key parameters: Topic Retrieval Cost, Topic Salience, Topic Coherence, and Topic Superficiality.
A model trained on these features demonstrates the efficacy of our approach in predicting question difficulty.
arXiv Detail & Related papers (2024-08-23T05:40:35Z) - DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
We introduce a modular, flexible, yet user-friendly software framework specifically developed to streamline computational-driven data exploration for human behavior analysis.
Our primary objective is to democratize access to advanced computational methodologies, thereby enabling researchers across disciplines to engage in detailed behavioral analysis without the need for extensive technical proficiency.
arXiv Detail & Related papers (2024-07-18T11:28:52Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Benchmarking Data Science Agents [11.582116078653968]
Large Language Models (LLMs) have emerged as promising aids as data science agents, assisting humans in data analysis and processing.
Yet their practical efficacy remains constrained by the varied demands of real-world applications and complicated analytical process.
We introduce DSEval -- a novel evaluation paradigm, as well as a series of innovative benchmarks tailored for assessing the performance of these agents.
arXiv Detail & Related papers (2024-02-27T03:03:06Z) - Explainable Attention for Few-shot Learning and Beyond [7.044125601403848]
We introduce a novel framework for achieving explainable hard attention finding, specifically tailored for few-shot learning scenarios.
Our approach employs deep reinforcement learning to implement the concept of hard attention, directly impacting raw input data.
arXiv Detail & Related papers (2023-10-11T18:33:17Z) - Improving robustness of jet tagging algorithms with adversarial
training: exploring the loss surface [0.0]
We study robustness of models to investigate how well they perform under slight distortions of input features.
Especially for tasks that involve many (low-level) inputs, the application of deep neural networks brings new challenges.
A corresponding defense strategy, adversarial training, improves robustness, while maintaining high performance.
arXiv Detail & Related papers (2023-03-25T16:23:27Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - A Survey on Programmatic Weak Supervision [74.13976343129966]
We give brief introduction of the PWS learning paradigm and review representative approaches for each PWS's learning workflow.
We identify several critical challenges that remain underexplored in the area to hopefully inspire future directions in the field.
arXiv Detail & Related papers (2022-02-11T04:05:38Z) - Stateful Offline Contextual Policy Evaluation and Learning [88.9134799076718]
We study off-policy evaluation and learning from sequential data.
We formalize the relevant causal structure of problems such as dynamic personalized pricing.
We show improved out-of-sample policy performance in this class of relevant problems.
arXiv Detail & Related papers (2021-10-19T16:15:56Z) - Pre-training strategies and datasets for facial representation learning [58.8289362536262]
We show how to find a universal face representation that can be adapted to several facial analysis tasks and datasets.
We systematically investigate two ways of large-scale representation learning applied to faces: supervised and unsupervised pre-training.
Our main two findings are: Unsupervised pre-training on completely in-the-wild, uncurated data provides consistent and, in some cases, significant accuracy improvements.
arXiv Detail & Related papers (2021-03-30T17:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.