Explainable Attention for Few-shot Learning and Beyond
- URL: http://arxiv.org/abs/2310.07800v2
- Date: Fri, 11 Oct 2024 14:19:24 GMT
- Title: Explainable Attention for Few-shot Learning and Beyond
- Authors: Bahareh Nikpour, Narges Armanfard,
- Abstract summary: We introduce a novel framework for achieving explainable hard attention finding, specifically tailored for few-shot learning scenarios.
Our approach employs deep reinforcement learning to implement the concept of hard attention, directly impacting raw input data.
- Score: 7.044125601403848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Attention mechanisms have exhibited promising potential in enhancing learning models by identifying salient portions of input data. This is particularly valuable in scenarios where limited training samples are accessible due to challenges in data collection and labeling. Drawing inspiration from human recognition processes, we posit that an AI baseline's performance could be more accurate and dependable if it is exposed to essential segments of raw data rather than the entire input dataset, akin to human perception. However, the task of selecting these informative data segments, referred to as hard attention finding, presents a formidable challenge. In situations with few training samples, existing studies struggle to locate such informative regions due to the large number of training parameters that cannot be effectively learned from the available limited samples. In this study, we introduce a novel and practical framework for achieving explainable hard attention finding, specifically tailored for few-shot learning scenarios, called FewXAT. Our approach employs deep reinforcement learning to implement the concept of hard attention, directly impacting raw input data and thus rendering the process interpretable for human understanding. Through extensive experimentation across various benchmark datasets, we demonstrate the efficacy of our proposed method.
Related papers
- FORCE: Feature-Oriented Representation with Clustering and Explanation [0.0]
We propose a SHAP based supervised deep learning framework FORCE.
It relies on two-stage usage of SHAP values in the neural network architecture.
We show that FORCE led to dramatic improvements in overall performance as compared to networks that did not incorporate the latent feature and attention framework.
arXiv Detail & Related papers (2025-04-07T22:05:50Z) - Leveraging Language Models for Analyzing Longitudinal Experiential Data in Education [0.8026406775824594]
We propose a novel approach to leveraging pre-trained language models (LMs) for early forecasting of academic trajectories in STEM students.
Key challenges in handling such data include high rates of missing values, limited dataset size due to costly data collection, and complex temporal variability across modalities.
arXiv Detail & Related papers (2025-03-27T15:37:23Z) - Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.
LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.
Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated learning (FL) offers a compelling framework for training large language models (LLMs)
We focus on machine unlearning, a crucial aspect for complying with privacy regulations like the Right to be Forgotten.
We explore various strategies that enable effective unlearning, such as perturbation techniques, model decomposition, and incremental learning.
arXiv Detail & Related papers (2024-06-14T08:40:58Z) - What Makes CLIP More Robust to Long-Tailed Pre-Training Data? A Controlled Study for Transferable Insights [67.72413262980272]
Severe data imbalance naturally exists among web-scale vision-language datasets.
We find CLIP pre-trained thereupon exhibits notable robustness to the data imbalance compared to supervised learning.
The robustness and discriminability of CLIP improve with more descriptive language supervision, larger data scale, and broader open-world concepts.
arXiv Detail & Related papers (2024-05-31T17:57:24Z) - Enhancing Deep Knowledge Tracing via Diffusion Models for Personalized Adaptive Learning [1.2248793682283963]
This study aims to tackle data shortage issues in student learning records to enhance DKT performance for personalized adaptive learning (PAL)
It employs TabDDPM, a diffusion model, to generate synthetic educational records to augment training data for enhancing DKT.
The experimental results demonstrate that the AI-generated data by TabDDPM significantly improves DKT performance.
arXiv Detail & Related papers (2024-04-25T00:23:20Z) - Language Semantic Graph Guided Data-Efficient Learning [10.039953846594805]
We introduce a Language Semantic Graph (LSG) which is constructed from labels manifest as natural language descriptions.
An auxiliary graph neural network is trained to extract high-level semantic relations and then used to guide the training of the primary model.
Our in-depth analysis shows that the LSG method also expedites the training process.
arXiv Detail & Related papers (2023-11-15T08:54:57Z) - Cross-Domain HAR: Few Shot Transfer Learning for Human Activity
Recognition [0.2944538605197902]
We present an approach for economic use of publicly available labeled HAR datasets for effective transfer learning.
We introduce a novel transfer learning framework, Cross-Domain HAR, which follows the teacher-student self-training paradigm.
We demonstrate the effectiveness of our approach for practically relevant few shot activity recognition scenarios.
arXiv Detail & Related papers (2023-10-22T19:13:25Z) - Automated Deception Detection from Videos: Using End-to-End Learning
Based High-Level Features and Classification Approaches [0.0]
We propose a multimodal approach combining deep learning and discriminative models for deception detection.
We employ convolutional end-to-end learning to analyze gaze, head pose, and facial expressions.
Our approach is evaluated on five datasets, including a new Rolling-Dice Experiment motivated by economic factors.
arXiv Detail & Related papers (2023-07-13T08:45:15Z) - Combining Public Human Activity Recognition Datasets to Mitigate Labeled
Data Scarcity [1.274578243851308]
We propose a novel strategy to combine publicly available datasets with the goal of learning a generalized HAR model.
Our experimental evaluation, which includes experimenting with different state-of-the-art neural network architectures, shows that combining public datasets can significantly reduce the number of labeled samples.
arXiv Detail & Related papers (2023-06-23T18:51:22Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
arXiv Detail & Related papers (2023-03-31T18:03:30Z) - Efficient Deep Clustering of Human Activities and How to Improve
Evaluation [53.08810276824894]
We present a new deep clustering model for human activity re-cog-ni-tion (HAR)
In this paper, we highlight several distinct problems with how deep HAR clustering models are evaluated.
We then discuss solutions to these problems, and suggest standard evaluation settings for future deep HAR clustering models.
arXiv Detail & Related papers (2022-09-17T14:12:42Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Learning to Count in the Crowd from Limited Labeled Data [109.2954525909007]
We focus on reducing the annotation efforts by learning to count in the crowd from limited number of labeled samples.
Specifically, we propose a Gaussian Process-based iterative learning mechanism that involves estimation of pseudo-ground truth for the unlabeled data.
arXiv Detail & Related papers (2020-07-07T04:17:01Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.