Degenerated Liouvillians and Steady-State Reduced Density Matrices
- URL: http://arxiv.org/abs/2101.10236v1
- Date: Mon, 25 Jan 2021 16:53:09 GMT
- Title: Degenerated Liouvillians and Steady-State Reduced Density Matrices
- Authors: Juzar Thingna and Daniel Manzano
- Abstract summary: We consider different approaches to obtain the emphtrue steady states of a degenerated Liouvillian.
We show how these can be used to obtain the invariant subspaces of the Liouvillian and hence the steady states.
These could be a powerful tool to deal with quantum many-body complex open systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symmetries in an open quantum system lead to degenerated Liouvillian that
physically implies the existence of multiple steady states. In such cases,
obtaining the initial condition independent stead states is highly nontrivial
since any linear combination of the \emph{true} asymptotic states, which may
not necessarily be a density matrix, is also a valid asymptote for the
Liouvillian. Thus, in this work we consider different approaches to obtain the
\emph{true} steady states of a degenerated Liouvillian. In the ideal scenario,
when the open system symmetry operators are known we show how these can be used
to obtain the invariant subspaces of the Liouvillian and hence the steady
states. We then discuss two other approaches that do not require any knowledge
of the symmetry operators. These could be a powerful tool to deal with quantum
many-body complex open systems. The first approach which is based on
Gramm-Schmidt orthonormalization of density matrices allows us to obtain
\emph{all} the steady states, whereas the second one based on large deviations
allows us to obtain the non-degenerated maximum and minimum current-carrying
states. We discuss our method with the help of an open para-Benzene ring and
examine interesting scenarios such as the dynamical restoration of Hamiltonian
symmetries in the long-time limit and apply the method to study the
eigenspacing statistics of the nonequilibrium steady state.
Related papers
- Instability of steady-state mixed-state symmetry-protected topological order to strong-to-weak spontaneous symmetry breaking [14.693424479293737]
We investigate whether open quantum systems hosting mixed-state symmetry-protected topological states as steady states retain this property under symmetric perturbations.
We find that typical symmetric perturbations cause strong-to-weak spontaneous symmetry breaking at arbitrarily small perturbations, destabilize the steady-state mixed-state symmetry-protected topological order.
We construct a quantum channel which replicates the essential physics of the Lindbladian and can be efficiently simulated using only Clifford gates, Pauli measurements, and feedback.
arXiv Detail & Related papers (2024-10-16T18:00:00Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Anomaly in open quantum systems and its implications on mixed-state quantum phases [6.356631694532754]
We develop a systematic approach to characterize the 't Hooft anomaly in open quantum systems.
By representing their symmetry transformation through superoperators, we incorporate them in a unified framework.
We find that anomalies of bosonic systems are classified by $Hd+2(Ktimes G,U(1))/Hd+2(G,U(1))$ in $d$ spatial dimensions.
arXiv Detail & Related papers (2024-03-21T16:34:37Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Third quantization for bosons: symplectic diagonalization, non-Hermitian
Hamiltonian, and symmetries [0.0]
We show that the non-Hermitian effective Hamiltonian of the system, next to incorporating the dynamics of the system, is a tool to analyze its symmetries.
As an example, we use the effective Hamiltonian to formulate a $mathcalPT$-symmetry' of an open system.
arXiv Detail & Related papers (2023-04-05T11:05:17Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.