論文の概要: Model-agnostic interpretation by visualization of feature perturbations
- arxiv url: http://arxiv.org/abs/2101.10502v1
- Date: Tue, 26 Jan 2021 00:53:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 19:49:27.360304
- Title: Model-agnostic interpretation by visualization of feature perturbations
- Title(参考訳): 特徴摂動の可視化によるモデル非依存解釈
- Authors: Wilson E. Marc\'ilio-Jr, Danilo M. Eler, Fabr\'icio Breve
- Abstract要約: 粒子群最適化アルゴリズムによって誘導される特徴の摂動を可視化し,モデルに依存しない解釈手法を提案する。
我々は,公開データセットに対して質的かつ定量的にアプローチを検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretation of machine learning models has become one of the most
important topics of research due to the necessity of maintaining control and
avoid bias in these algorithms. Since many machine learning algorithms are
published every day, there is a need for novel model-agnostic interpretation
approaches that could be used to interpret a great variety of algorithms. One
particularly useful way to interpret machine learning models is to feed
different input data to understand the changes in the prediction. Using such an
approach, practitioners can define relations among patterns of data and a
model's decision. In this work, we propose a model-agnostic interpretation
approach that uses visualization of feature perturbations induced by the
particle swarm optimization algorithm. We validate our approach both
qualitatively and quantitatively on publicly available datasets, showing the
capability to enhance the interpretation of different classifiers while
yielding very stable results if compared with the state of the art algorithms.
- Abstract(参考訳): 機械学習モデルの解釈は、これらのアルゴリズムにおける制御の維持とバイアス回避の必要性から、研究の最も重要なトピックの1つとなっている。
多くの機械学習アルゴリズムが毎日発行されているので、様々なアルゴリズムを解釈するのに使える新しいモデルに依存しない解釈アプローチが必要である。
機械学習モデルを解釈するのに特に有用な方法は、予測の変化を理解するために異なる入力データをフィードすることである。
このようなアプローチを使って、実践者はデータのパターンとモデルの決定との関係を定義することができる。
本研究では,粒子群最適化アルゴリズムによって引き起こされる特徴摂動を可視化するモデル非依存解釈手法を提案する。
本手法は,公開データセット上で定性的かつ定量的に検証し,アートアルゴリズムの状態と比較して非常に安定した結果が得られると同時に,異なる分類器の解釈を強化する能力を示す。
関連論文リスト
- Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
決定アルゴリズムは様々なアプリケーションで使われている。
数理モデルに頼らずにデータから調整された高度パラメトリックアーキテクチャを使用するディープラーニングアプローチが、ますます人気が高まっている。
モデルに基づく最適化とデータ中心のディープラーニングは、しばしば異なる規律とみなされる。
論文 参考訳(メタデータ) (2022-05-05T13:40:08Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
制御された設定では、インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-07T06:59:46Z) - Multivariate Data Explanation by Jumping Emerging Patterns Visualization [78.6363825307044]
多変量データセットにおけるパターンの識別と視覚的解釈を支援するVAX(multiVariate dAta eXplanation)を提案する。
既存の類似のアプローチとは異なり、VAXはJumping Emerging Patternsという概念を使って、複数の多様化したパターンを特定し、集約し、データ変数のロジックの組み合わせを通して説明を生成する。
論文 参考訳(メタデータ) (2021-06-21T13:49:44Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Mean-field methods and algorithmic perspectives for high-dimensional
machine learning [5.406386303264086]
障害のあるシステムの統計物理学のツールに基づくアプローチを再検討する。
我々は、様々な理論モデルの位相図に光を放つために、複製法とメッセージパッシングアルゴリズムの深い接続に乗じる。
論文 参考訳(メタデータ) (2021-03-10T09:02:36Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - Interactive slice visualization for exploring machine learning models [0.0]
予測空間のスライスをインタラクティブに可視化し,解釈可能性の低下に対処する。
具体的には,機械学習アルゴリズムのブラックボックスを開放し,モデルの適合性を疑問視し,説明し,検証し,比較する。
論文 参考訳(メタデータ) (2021-01-18T10:47:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。