論文の概要: Invariant Causal Mechanisms through Distribution Matching
- arxiv url: http://arxiv.org/abs/2206.11646v1
- Date: Thu, 23 Jun 2022 12:06:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-24 13:16:49.151688
- Title: Invariant Causal Mechanisms through Distribution Matching
- Title(参考訳): 分布マッチングによる不変因果機構
- Authors: Mathieu Chevalley, Charlotte Bunne, Andreas Krause, Stefan Bauer
- Abstract要約: 本研究では、因果的視点と不変表現を学習するための新しいアルゴリズムを提供する。
実験により,このアルゴリズムは様々なタスク群でうまく動作し,特にドメインの一般化における最先端のパフォーマンスを観察する。
- 参考スコア(独自算出の注目度): 86.07327840293894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning representations that capture the underlying data generating process
is a key problem for data efficient and robust use of neural networks. One key
property for robustness which the learned representation should capture and
which recently received a lot of attention is described by the notion of
invariance. In this work we provide a causal perspective and new algorithm for
learning invariant representations. Empirically we show that this algorithm
works well on a diverse set of tasks and in particular we observe
state-of-the-art performance on domain generalization, where we are able to
significantly boost the score of existing models.
- Abstract(参考訳): 基盤となるデータ生成プロセスをキャプチャする学習表現は、ニューラルネットワークの効率的で堅牢な使用において重要な問題である。
学習表現が捉えるべき頑健性と最近注目を浴びるべきことの1つの重要な特性は、不変性の概念によって説明される。
本研究では,不変表現を学習するための因果的視点と新しいアルゴリズムを提案する。
実験により,本アルゴリズムは多種多様なタスクに対して有効であり,特にドメイン一般化における最先端のパフォーマンスを観察し,既存のモデルのスコアを大幅に向上できることを示した。
関連論文リスト
- Robust Domain Generalisation with Causal Invariant Bayesian Neural Networks [9.999199798941424]
本稿では,推論プロセスのメカニズムからデータ分布の学習を阻害するベイズ型ニューラルネットワークを提案する。
理論的,実験的に,我々のモデルは因果的介入下での推論に近似していることを示す。
論文 参考訳(メタデータ) (2024-10-08T20:38:05Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
本稿では,エンコーダのみのトランスフォーマーアーキテクチャのアテンションヘッドにおける意味的意味パターンについて検討する。
注意重みの修正はトレーニングプロセスの促進だけでなく,最適化の安定性の向上にも寄与する。
論文 参考訳(メタデータ) (2024-09-20T07:41:47Z) - Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
抽出した特徴量の均等分布を保証するために正規化手法を導入する。
その明らかな単純さにもかかわらず、我々の手法は様々な細粒度視覚認識データセットに対して顕著な性能向上を示した。
論文 参考訳(メタデータ) (2024-09-03T07:32:46Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Learning invariant representations of time-homogeneous stochastic dynamical systems [27.127773672738535]
我々は,そのダイナミクスを忠実に捉えた状態の表現を学習する問題を研究する。
これは、転送演算子やシステムのジェネレータを学ぶのに役立ちます。
ニューラルネットワークに対する最適化問題として,優れた表現の探索が可能であることを示す。
論文 参考訳(メタデータ) (2023-07-19T11:32:24Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Bayesian Attention Belief Networks [59.183311769616466]
注意に基づくニューラルネットワークは、幅広いタスクにおいて最先端の結果を得た。
本稿では,非正規化注意重みをモデル化してデコーダネットワークを構築するベイズ的注意信念ネットワークについて紹介する。
提案手法は, 精度, 不確実性推定, ドメイン間の一般化, 敵攻撃において, 決定論的注意と最先端の注意よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-09T17:46:22Z) - Model-agnostic interpretation by visualization of feature perturbations [0.0]
粒子群最適化アルゴリズムによって誘導される特徴の摂動を可視化し,モデルに依存しない解釈手法を提案する。
我々は,公開データセットに対して質的かつ定量的にアプローチを検証する。
論文 参考訳(メタデータ) (2021-01-26T00:53:29Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。