Generative Adversarial Network using Perturbed-Convolutions
- URL: http://arxiv.org/abs/2101.10841v2
- Date: Tue, 2 Feb 2021 11:32:20 GMT
- Title: Generative Adversarial Network using Perturbed-Convolutions
- Authors: Seung Park, Yoon-Jae Yeo, and Yong-Goo Shin
- Abstract summary: This paper presents a novel convolutional layer, called perturbed-convolution (PConv)
It focuses on achieving two goals simultaneously: penalize the discriminator for training GAN stably and prevent the overfitting problem in the discriminator.
- Score: 10.093662416275695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite growing insights into the GAN training, it still suffers from
instability during the training procedure. To alleviate this problem, this
paper presents a novel convolutional layer, called perturbed-convolution
(PConv), which focuses on achieving two goals simultaneously: penalize the
discriminator for training GAN stably and prevent the overfitting problem in
the discriminator. PConv generates perturbed features by randomly disturbing an
input tensor before performing the convolution operation. This approach is
simple but surprisingly effective. First, to reliably classify real and
generated samples using the disturbed input tensor, the intermediate layers in
the discriminator should learn features having a small local Lipschitz value.
Second, due to the perturbed features in PConv, the discriminator is difficult
to memorize the real images; this makes the discriminator avoid the overfitting
problem. To show the generalization ability of the proposed method, we
conducted extensive experiments with various loss functions and datasets
including CIFAR-10, CelebA-HQ, LSUN, and tiny-ImageNet. Quantitative
evaluations demonstrate that WCL significantly improves the performance of GAN
and conditional GAN in terms of Frechet inception distance (FID). For instance,
the proposed method improves FID scores on the tiny-ImageNet dataset from 58.59
to 50.42.
Related papers
- PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion [2.458437232470188]
Class-conditional image generation using generative adversarial networks (GANs) has been investigated through various techniques.
We propose a novel approach for class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-based noise injection process.
Our method outperforms state-of-the-art conditional GAN models for image generation in terms of performance.
arXiv Detail & Related papers (2023-05-24T07:59:44Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications.
We propose a novel training pipeline to address the mode collapse issue of GANs.
arXiv Detail & Related papers (2022-08-25T12:33:31Z) - Discriminability-enforcing loss to improve representation learning [20.4701676109641]
We introduce a new loss term inspired by the Gini impurity to minimize the entropy of individual high-level features.
Although our Gini loss induces highly-discriminative features, it does not ensure that the distribution of the high-level features matches the distribution of the classes.
Our empirical results show that integrating our novel loss terms into the training objective consistently outperforms the models trained with cross-entropy alone.
arXiv Detail & Related papers (2022-02-14T22:31:37Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - Frequency-aware Discriminative Feature Learning Supervised by
Single-Center Loss for Face Forgery Detection [89.43987367139724]
Face forgery detection is raising ever-increasing interest in computer vision.
Recent works have reached sound achievements, but there are still unignorable problems.
A novel frequency-aware discriminative feature learning framework is proposed in this paper.
arXiv Detail & Related papers (2021-03-16T14:17:17Z) - $\sigma^2$R Loss: a Weighted Loss by Multiplicative Factors using
Sigmoidal Functions [0.9569316316728905]
We introduce a new loss function called squared reduction loss ($sigma2$R loss), which is regulated by a sigmoid function to inflate/deflate the error per instance.
Our loss has clear intuition and geometric interpretation, we demonstrate by experiments the effectiveness of our proposal.
arXiv Detail & Related papers (2020-09-18T12:34:40Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
We propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods.
In our model, generative and discriminative networks play a novel competitive game.
The coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.
arXiv Detail & Related papers (2020-04-05T12:36:06Z) - Feature Quantization Improves GAN Training [126.02828112121874]
Feature Quantization (FQ) for the discriminator embeds both true and fake data samples into a shared discrete space.
Our method can be easily plugged into existing GAN models, with little computational overhead in training.
arXiv Detail & Related papers (2020-04-05T04:06:50Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z) - Anomaly Detection by One Class Latent Regularized Networks [36.67420338535258]
Semi-supervised Generative Adversarial Networks (GAN)-based methods have been gaining popularity in anomaly detection task recently.
A novel adversarial dual autoencoder network is proposed, in which the underlying structure of training data is captured in latent feature space.
Experiments show that our model achieves the state-of-the-art results on MNIST and CIFAR10 datasets as well as GTSRB stop signs dataset.
arXiv Detail & Related papers (2020-02-05T02:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.