論文の概要: Challenges Encountered in Turkish Natural Language Processing Studies
- arxiv url: http://arxiv.org/abs/2101.11436v1
- Date: Thu, 21 Jan 2021 08:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 17:40:42.268412
- Title: Challenges Encountered in Turkish Natural Language Processing Studies
- Title(参考訳): トルコの自然言語処理研究における課題
- Authors: Kadir Tohma, Yakup Kutlu
- Abstract要約: 自然言語処理は、人工知能と言語学を組み合わせたコンピュータサイエンスの分野です。
本研究では,トルコ語の自然言語処理における興味深い特徴について述べる。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language processing is a branch of computer science that combines
artificial intelligence with linguistics. It aims to analyze a language element
such as writing or speaking with software and convert it into information.
Considering that each language has its own grammatical rules and vocabulary
diversity, the complexity of the studies in this field is somewhat
understandable. For instance, Turkish is a very interesting language in many
ways. Examples of this are agglutinative word structure, consonant/vowel
harmony, a large number of productive derivational morphemes (practically
infinite vocabulary), derivation and syntactic relations, a complex emphasis on
vocabulary and phonological rules. In this study, the interesting features of
Turkish in terms of natural language processing are mentioned. In addition,
summary info about natural language processing techniques, systems and various
sources developed for Turkish are given.
- Abstract(参考訳): 自然言語処理は、人工知能と言語学を組み合わせたコンピュータ科学の分野である。
ソフトウェアで書いたり話したりといった言語要素を分析し、それを情報に変換することを目的としている。
各言語には独自の文法規則と語彙の多様性があるので、この分野の研究の複雑さはある程度理解できる。
例えば、トルコ語は多くの点で非常に興味深い言語です。
例えば、凝集語構造、子音/母音調和、多くの生産的導出的形態素(実際には無限の語彙)、導出と構文の関係、語彙と音韻規則の複雑な強調などがある。
本研究では,トルコ語の自然言語処理における興味深い特徴について述べる。
また,トルコ語向けに開発された自然言語処理技術,システム,各種資料の要約情報も提供される。
- 全文 参考訳へのリンク
関連論文リスト
- Identifying concept libraries from language about object structure [56.83719358616503]
自然言語記述を2Kプロシージャ生成オブジェクトの多種多様なセットに利用して,ユーザが使用する部分を特定する。
我々は、異なる部分概念を含むプログラムライブラリの空間の探索として、この問題を形式化する。
自然言語と構造化されたプログラム表現を組み合わせることで、人々が名前をつける部分概念を規定する基本的な情報理論的なトレードオフを発見する。
論文 参考訳(メタデータ) (2022-05-11T17:49:25Z) - AUTOLEX: An Automatic Framework for Linguistic Exploration [93.89709486642666]
本稿では言語学者による言語現象の簡潔な記述の発見と抽出を容易にするための自動フレームワークを提案する。
具体的には、この枠組みを用いて、形態的一致、ケースマーキング、単語順序の3つの現象について記述を抽出する。
本研究では,言語専門家の助けを借りて記述を評価し,人間の評価が不可能な場合に自動評価を行う手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T20:37:30Z) - Linking Emergent and Natural Languages via Corpus Transfer [98.98724497178247]
創発言語と自然言語のコーパス転送によるリンクを確立する新しい方法を提案する。
このアプローチでは,言語モデリングとイメージキャプションという,2つの異なるタスクに対して,非自明な転送メリットを示す。
また,同一画像に基づく自然言語キャプションに創発的メッセージを翻訳することで,創発的言語の伝達可能性を予測する新しい指標を提案する。
論文 参考訳(メタデータ) (2022-03-24T21:24:54Z) - Pretraining with Artificial Language: Studying Transferable Knowledge in
Language Models [32.27333420000134]
ニューラルネットワークエンコーダが自然言語処理にどのような構造的知識を伝達できるかを考察する。
我々は、自然言語を模倣する構造的特性を持つ人工言語を設計し、データ上にエンコーダを事前訓練し、そのエンコーダが自然言語の下流タスクにどれだけの性能を示すかを確認する。
論文 参考訳(メタデータ) (2022-03-19T13:29:48Z) - Transcribing Natural Languages for The Deaf via Neural Editing Programs [84.0592111546958]
本研究の目的は,難聴者コミュニティのための自然言語文の書き起こしを目的とし,手話の発声を指示するグロス化の課題について検討することである。
以前のシーケンス・ツー・シーケンス言語モデルは、しばしば2つの異なる言語間の豊かな関係を捉えず、不満足な書き起こしにつながる。
異なる文法に拘わらず,単語の大部分を文と共有しながら,難聴コミュニケーションの容易な文を効果的に単純化することが観察された。
論文 参考訳(メタデータ) (2021-12-17T16:21:49Z) - Generalized Optimal Linear Orders [9.010643838773477]
言語の逐次構造、特に文中の単語の順序は、人間の言語処理において中心的な役割を果たす。
言語の計算モデルの設計において、デファクトのアプローチは、原文と同じ順序で命令された単語を機械に提示することである。
この研究の本質は、これが望ましいという暗黙の仮定を疑問視し、自然言語処理における語順の考慮に理論的健全性を注入することである。
論文 参考訳(メタデータ) (2021-08-13T13:10:15Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z) - Natural Language Generation Using Link Grammar for General
Conversational Intelligence [0.0]
Link Grammarデータベースを用いて,文法的に有効な文を自動的に生成する手法を提案する。
この自然言語生成方法は、最先端のベースラインをはるかに上回り、プロトAGI質問応答パイプラインの最終コンポーネントとして機能する。
論文 参考訳(メタデータ) (2021-04-19T06:16:07Z) - ReferentialGym: A Nomenclature and Framework for Language Emergence &
Grounding in (Visual) Referential Games [0.30458514384586394]
自然言語は、人間が情報を伝達し、共通の目標に向けて協力するための強力なツールである。
計算言語学者は、言語ゲームによって引き起こされる人工言語の出現を研究している。
AIコミュニティは、言語の出現と、より優れたヒューマンマシンインターフェースに向けた基礎研究を開始した。
論文 参考訳(メタデータ) (2020-12-17T10:22:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。