論文の概要: What Matters in Detecting AI-Generated Videos like Sora?
- arxiv url: http://arxiv.org/abs/2406.19568v1
- Date: Thu, 27 Jun 2024 23:03:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 18:10:10.165703
- Title: What Matters in Detecting AI-Generated Videos like Sora?
- Title(参考訳): SoraのようなAI生成ビデオの検出には何が重要か?
- Authors: Chirui Chang, Zhengzhe Liu, Xiaoyang Lyu, Xiaojuan Qi,
- Abstract要約: 合成ビデオと現実世界のビデオのギャップは、まだ未発見のままだ。
本研究では,現在最先端のAIモデルであるStable Video Diffusionによって生成された実世界の映像を比較した。
我々のモデルは、訓練中にSoraのビデオに露出することなく、Soraが生成した映像を高精度に検出することができる。
- 参考スコア(独自算出の注目度): 51.05034165599385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in diffusion-based video generation have showcased remarkable results, yet the gap between synthetic and real-world videos remains under-explored. In this study, we examine this gap from three fundamental perspectives: appearance, motion, and geometry, comparing real-world videos with those generated by a state-of-the-art AI model, Stable Video Diffusion. To achieve this, we train three classifiers using 3D convolutional networks, each targeting distinct aspects: vision foundation model features for appearance, optical flow for motion, and monocular depth for geometry. Each classifier exhibits strong performance in fake video detection, both qualitatively and quantitatively. This indicates that AI-generated videos are still easily detectable, and a significant gap between real and fake videos persists. Furthermore, utilizing the Grad-CAM, we pinpoint systematic failures of AI-generated videos in appearance, motion, and geometry. Finally, we propose an Ensemble-of-Experts model that integrates appearance, optical flow, and depth information for fake video detection, resulting in enhanced robustness and generalization ability. Our model is capable of detecting videos generated by Sora with high accuracy, even without exposure to any Sora videos during training. This suggests that the gap between real and fake videos can be generalized across various video generative models. Project page: https://justin-crchang.github.io/3DCNNDetection.github.io/
- Abstract(参考訳): 近年の拡散型ビデオ生成の進歩は顕著な成果を上げているが, 合成ビデオと実世界のビデオの差は未探索のままである。
本研究では、このギャップを外観、動き、幾何学の3つの基本的な視点から検討し、現状のAIモデルであるStable Video Diffusionによって生成された実世界の映像と比較する。
これを実現するために、3つの分類器を3次元畳み込みネットワークを用いて訓練し、それぞれが視覚基盤モデルの特徴、運動の光学フロー、幾何学の単眼深度といった異なる側面を目標としている。
各分類器は、質的にも定量的にも、偽のビデオ検出において強い性能を示す。
これは、AIが生成したビデオは依然として容易に検出でき、実際のビデオと偽のビデオの間に大きなギャップが持続していることを示している。
さらに、Grad-CAMを利用することで、外観、動き、幾何学におけるAI生成ビデオの系統的な失敗を指摘できる。
最後に,疑似ビデオ検出のための外観,光学的流れ,深度情報を統合したEnsemble-of-Expertsモデルを提案する。
我々のモデルは、訓練中にSoraのビデオに露出することなく、Soraが生成した映像を高精度に検出することができる。
これは、実写と偽写のギャップが、様々なビデオ生成モデルにまたがって一般化できることを示唆している。
プロジェクトページ: https://justin-crchang.github.io/3DCNNDetection.github.io/
関連論文リスト
- Generating 3D-Consistent Videos from Unposed Internet Photos [68.944029293283]
カメラパラメータなどの3Dアノテーションを使わずに,スケーラブルな3D対応ビデオモデルをトレーニングする。
その結果,映像やマルチビューインターネット写真などの2次元データのみを用いて,シーンレベルの3D学習をスケールアップできることが示唆された。
論文 参考訳(メタデータ) (2024-11-20T18:58:31Z) - SVG: 3D Stereoscopic Video Generation via Denoising Frame Matrix [60.48666051245761]
本研究では,3次元立体映像生成のためのポーズフリーかつトレーニングフリーな手法を提案する。
提案手法は, 推定ビデオ深度を用いた立体視ベースライン上のカメラビューにモノクロ映像をワープする。
本研究では,映像の画質向上を図るために,非閉塞境界再注入方式を開発した。
論文 参考訳(メタデータ) (2024-06-29T08:33:55Z) - Splatter a Video: Video Gaussian Representation for Versatile Processing [48.9887736125712]
ビデオ表現は、トラッキング、深度予測、セグメンテーション、ビュー合成、編集など、さまざまなダウンストリームタスクに不可欠である。
我々は,映像を3Dガウスに埋め込む,新しい3D表現-ビデオガウス表現を導入する。
トラッキング、一貫したビデオ深度と特徴の洗練、動きと外観の編集、立体映像生成など、多数のビデオ処理タスクで有効であることが証明されている。
論文 参考訳(メタデータ) (2024-06-19T22:20:03Z) - Turns Out I'm Not Real: Towards Robust Detection of AI-Generated Videos [16.34393937800271]
高品質なビデオを作成するための生成モデルは、デジタル整合性とプライバシーの脆弱性に関する懸念を提起している。
ディープフェイクスのビデオと戦うための最近の研究は、ガン生成サンプルを正確に識別する検出器を開発した。
本稿では,複数の最先端(SOTA)生成モデルから合成された映像を検出するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-13T21:52:49Z) - VideoPhy: Evaluating Physical Commonsense for Video Generation [93.28748850301949]
生成したビデオが現実世界のアクティビティの物理的常識に従うかどうかを評価するためのベンチマークであるVideoPhyを提示する。
そして、さまざまな最先端のテキスト・ビデオ生成モデルからキャプションに条件付けされたビデオを生成する。
人間の評価では、既存のモデルには、与えられたテキストプロンプトに付着したビデオを生成する能力が欠けていることが判明した。
論文 参考訳(メタデータ) (2024-06-05T17:53:55Z) - Distinguish Any Fake Videos: Unleashing the Power of Large-scale Data and Motion Features [21.583246378475856]
我々は、AI生成ビデオ検出(GenVidDet)に特化して設計された広範なビデオデータセットを紹介する。
また,DuB3D(Du-Branch 3D Transformer)という,実写映像と実写映像を区別する革新的な方法を提案する。
DuB3Dは、96.77%の精度で実際の映像コンテンツと生成された映像コンテンツを区別でき、目に見えないタイプでも強力な一般化能力を持つ。
論文 参考訳(メタデータ) (2024-05-24T08:26:04Z) - Sora Generates Videos with Stunning Geometrical Consistency [75.46675626542837]
そこで本研究では,実世界の物理原理に則って生成した映像の質を評価する新しいベンチマークを提案する。
生成した映像を3次元モデルに変換する手法を用いて,3次元再構成の精度が映像品質に大きく影響しているという前提を生かした。
論文 参考訳(メタデータ) (2024-02-27T10:49:05Z) - VGMShield: Mitigating Misuse of Video Generative Models [7.963591895964269]
VGMShieldは、フェイクビデオ生成のライフサイクルを通じて、単純だが先駆的な3つの緩和セットである。
まず、生成されたビデオにユニークさがあるかどうか、そしてそれらを実際のビデオと区別できるかどうかを理解する。
そこで本研究では,偽動画を生成モデルにマッピングするテクトニクス問題について検討する。
論文 参考訳(メタデータ) (2024-02-20T16:39:23Z) - Detecting Deepfake Videos Using Euler Video Magnification [1.8506048493564673]
Deepfakeのビデオは、高度な機械学習技術を使ってビデオを操作している。
本稿では,ディープフェイク映像の識別技術について検討する。
提案手法では,Euler手法から抽出した特徴を用いて,偽造映像と未修正映像を分類する3つのモデルを訓練する。
論文 参考訳(メタデータ) (2021-01-27T17:37:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。