論文の概要: BOLD: Dataset and Metrics for Measuring Biases in Open-Ended Language
Generation
- arxiv url: http://arxiv.org/abs/2101.11718v1
- Date: Wed, 27 Jan 2021 22:07:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-01 19:44:43.890144
- Title: BOLD: Dataset and Metrics for Measuring Biases in Open-Ended Language
Generation
- Title(参考訳): BOLD:オープンエンディング言語生成におけるバイアス計測のためのデータセットとメトリクス
- Authors: Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya Krishna, Yada
Pruksachatkun, Kai-Wei Chang, Rahul Gupta
- Abstract要約: Open-Ended Language Generationデータセットのバイアスは23,679の英語テキスト生成プロンプトで構成されている。
3つの人気のある言語モデルから生成されたテキストを調べると、これらのモデルの大半は、人によるウィキペディアのテキストよりも大きな社会的バイアスを示すことが明らかになっている。
- 参考スコア(独自算出の注目度): 42.34923623457615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep learning techniques have enabled machines to generate
cohesive open-ended text when prompted with a sequence of words as context.
While these models now empower many downstream applications from conversation
bots to automatic storytelling, they have been shown to generate texts that
exhibit social biases. To systematically study and benchmark social biases in
open-ended language generation, we introduce the Bias in Open-Ended Language
Generation Dataset (BOLD), a large-scale dataset that consists of 23,679
English text generation prompts for bias benchmarking across five domains:
profession, gender, race, religion, and political ideology. We also propose new
automated metrics for toxicity, psycholinguistic norms, and text gender
polarity to measure social biases in open-ended text generation from multiple
angles. An examination of text generated from three popular language models
reveals that the majority of these models exhibit a larger social bias than
human-written Wikipedia text across all domains. With these results we
highlight the need to benchmark biases in open-ended language generation and
caution users of language generation models on downstream tasks to be cognizant
of these embedded prejudices.
- Abstract(参考訳): ディープラーニング技術の最近の進歩により、単語のシーケンスをコンテキストとして促すと、機械は結束したオープンエンドテキストを生成することができる。
これらのモデルは、会話ボットから自動ストーリーテリングまで、多くの下流アプリケーションに力を与える一方で、社会的バイアスを示すテキストを生成することが示されている。
オープンエンド言語生成における社会バイアスの体系的研究とベンチマークを行うため,我々は,23,679の英語テキスト生成プロンプトからなる大規模データセットであるopen-ended language generation dataset (bold) のバイアスを紹介する。
また, オープンエンドテキスト生成における社会的バイアスを多角から測定するために, 毒性, 精神言語規範, テキスト性極性に関する新しい自動指標を提案する。
人気のある3つの言語モデルから生成されたテキストを調べると、これらのモデルの大部分は、すべてのドメインで人間が書いたウィキペディアテキストよりも大きな社会的バイアスを示していることが分かる。
これらの結果から、オープンエンド言語生成におけるバイアスのベンチマークの必要性を強調し、下流タスクにおける言語生成モデルのユーザに対して、これらの組込み偏見を認識するよう警告する。
関連論文リスト
- MultiSocial: Multilingual Benchmark of Machine-Generated Text Detection of Social-Media Texts [0.6053347262128919]
MultiSocial データセットには 472,097 のテキストが含まれており、そのうち約58k が人文で書かれている。
このベンチマークを用いて、ゼロショットの既存の検出手法と微調整形式を比較した。
以上の結果から,微調整された検出器はソーシャルメディア上でのトレーニングに問題はないことが示唆された。
論文 参考訳(メタデータ) (2024-06-18T12:26:09Z) - Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - CBBQ: A Chinese Bias Benchmark Dataset Curated with Human-AI
Collaboration for Large Language Models [52.25049362267279]
本稿では,人的専門家と生成言語モデルによって共同で構築された100万以上の質問からなる中国語バイアスベンチマークデータセットを提案する。
データセットのテストインスタンスは、手作業による厳格な品質管理を備えた3K以上の高品質テンプレートから自動的に抽出される。
大規模な実験により、データセットがモデルバイアスを検出することの有効性が実証された。
論文 参考訳(メタデータ) (2023-06-28T14:14:44Z) - Exposing Bias in Online Communities through Large-Scale Language Models [3.04585143845864]
この研究は、言語モデルにおけるバイアスの欠陥を使用して、6つの異なるオンラインコミュニティのバイアスを調査します。
得られたモデルのバイアスは、異なる人口層を持つモデルに促し、これらの世代における感情と毒性の値を比較することで評価される。
この作業は、トレーニングデータからバイアスがどの程度容易に吸収されるかを確認するだけでなく、さまざまなデータセットやコミュニティのバイアスを特定し比較するためのスケーラブルな方法も提示する。
論文 参考訳(メタデータ) (2023-06-04T08:09:26Z) - A survey on text generation using generative adversarial networks [0.0]
本研究は, ジェネレーティブ・アドバイサル・ネットワークを用いた最近の研究とテキスト生成の進展について, 徹底的なレビューを行う。
テキスト生成における敵対的学習の使用は、いわゆる「自然な」言語を生成する代替手段を提供するので、有望である。
論文 参考訳(メタデータ) (2022-12-20T17:54:08Z) - Challenges in Measuring Bias via Open-Ended Language Generation [1.5552869983952944]
我々は、プロンプトセット、メトリクス、自動ツール、サンプリング戦略の特定の選択がバイアス結果にどのように影響するかを分析する。
オープンな言語生成におけるバイアスを報告するためのレコメンデーションを提供する。
論文 参考訳(メタデータ) (2022-05-23T19:57:15Z) - Estimating the Personality of White-Box Language Models [0.589889361990138]
大規模なテキストコーパスで訓練された大規模言語モデルは、至る所で広範囲のアプリケーションで使用されている。
既存の研究は、これらのモデルが人間の偏見を捉え、捉えていることを示している。
これらのバイアス、特に害を引き起こす可能性のあるバイアスの多くは、十分に調査されている。
しかし、これらのモデルによって受け継がれた人間の性格特性を推測し、変化させる研究は、ほとんど、あるいは存在しない。
論文 参考訳(メタデータ) (2022-04-25T23:53:53Z) - A Survey on Retrieval-Augmented Text Generation [53.04991859796971]
Retrieval-augmented text generationは顕著な利点があり、多くのNLPタスクで最先端のパフォーマンスを実現している。
まず、検索拡張生成の一般的なパラダイムを強調し、異なるタスクに応じて注目すべきアプローチをレビューする。
論文 参考訳(メタデータ) (2022-02-02T16:18:41Z) - Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand [117.62186420147563]
リーダーボード, 二次元リーダーボード(ビルボード)の一般化を提案する。
従来の一次元のリーダーボードがシステムに所定の基準でソートするのとは異なり、ビルボードはジェネレータと評価指標の両方を競合するエントリとして受け入れる。
いくつかの異なるメトリクスの線形アンサンブルが、場合によっては既存のメトリクスを独立して大幅に上回っていることを実証する。
論文 参考訳(メタデータ) (2021-12-08T06:34:58Z) - GENIE: A Leaderboard for Human-in-the-Loop Evaluation of Text Generation [83.10599735938618]
リーダーボードは、評価を標準化し、独立した外部リポジトリに委譲することで、多くのNLPデータセットのモデル開発を容易にしています。
本研究では、テキスト生成タスクにリーダーボードの容易さをもたらす人間評価リーダーボードであるGENIEを紹介します。
論文 参考訳(メタデータ) (2021-01-17T00:40:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。